

# myBIOME

## Gut microbiome report

**Name:** xxxxxxxxxxxxx

**Sample ID:** xxxxxxxxxxxxx

**Report generated on:** xxxxxxxx



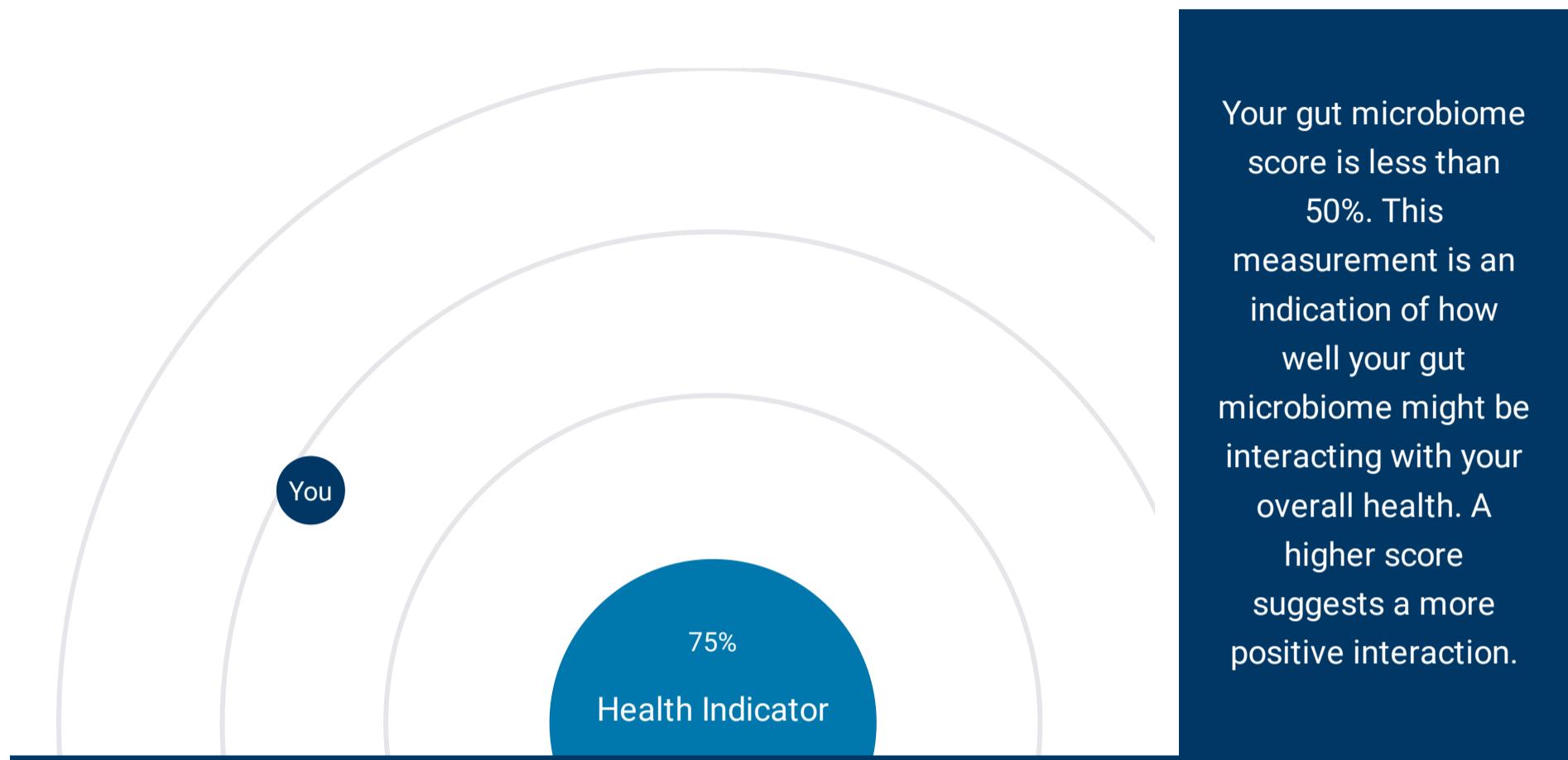
**Dr. Nicola Angel**  
Laboratory Director



**Dr. David Wood**  
Director of Bioinformatics



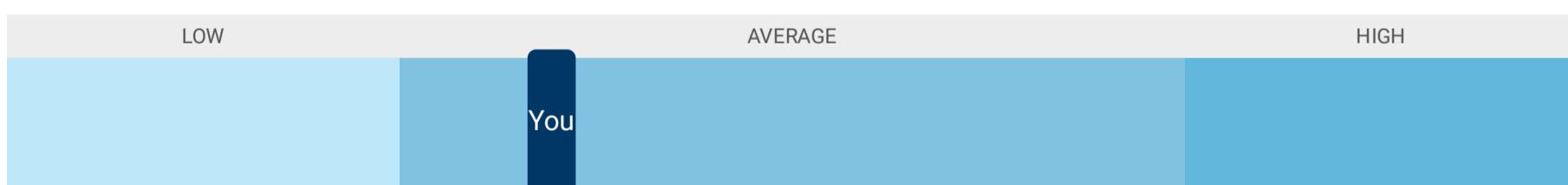
powered by  
**MICROBA** 


# Introduction to *myBIOME*<sup>TM</sup> Report

myBIOME<sup>TM</sup> is a comprehensive report detailing key information about your personal gut microbiome. As new information about the links between the gut microbiome and health are revealed, we will continue to update your online report to include these new findings.

Any information provided by us (including any information contained on our website or in any microbiome report) is for information purposes only. Such information is not medical advice and must not be taken to be a substitute for a consultation with your healthcare professional or doctor. It is not intended to diagnose conditions nor prescribe the use of any remedy, diet or lifestyle practice. Your health is your responsibility and if you have any concerns related to your health we recommend that you seek the advice of your healthcare professional or doctor.

# Your report overview


Welcome to the start of your journey to understanding how your microbiome affects your health. Throughout this report, the analysed sample is compared to a healthy comparison group. This group is a collection of gut microbiome samples from everyday healthy people, who have not reported any significant health issues or symptoms. It represents a range of age groups, genders and diets.



## Microbial Diversity

### MICROBIAL DIVERSITY

Microbial diversity is a measure of the number of different microorganisms and the amount of each of these microorganisms in your sample. Average to high microbial diversity is associated with good health. A varied diet rich in plant-based foods such as fruits, vegetables, whole grains and nuts can help increase microbiome diversity. The Shannon Index is a measure of diversity which is used by members of the scientific community to compare results through time.



Your diversity level is

**Average**

Shannon Index

**3.63**

# Your key insights

## Your gut microbiome's potential to produce **butyrate**, a primary fuel source for gut cells

**This is a good level!** Your potential to produce butyrate is at a level similar to the healthy group. To benefit from this important gut microbiome function, ensure your diet is rich in dietary sources of resistant starch.

**A This sample reported a level similar to the healthy group**

The production of butyrate is a well-studied function of the gut microbiome. This 'metabolite' is named as one of the primary fuel sources for gut cells and has been shown to reduce inflammation throughout the body and help regulate appetite. A similar or high level to produce butyrate is beneficial for your gut microbiome and helps to maintain a healthy environment in the gut. Foods rich in resistant starch (e.g. lentils, peas, beans, and rolled oats) will encourage microbes in your gut to produce butyrate.

EVIDENCE RATING ★★★★★

## Your microbiome's potential to negatively impact your gut through **inflammation**

**This is a typical level.** You have a similar potential to produce hexa-lipopolysaccharides (hexa-LPS) as the healthy group, which means this substance is unlikely to be a major contributor to inflammation in your body. Having diverse sources of fibre can help reduce the levels of microbes that produce hexa-LPS.

**A This sample reported a level similar to the healthy group**

Hexa-lipopolysaccharide (hexa-LPS) is a pro-inflammatory molecule and a component of the cell wall in some bacteria. When these bacteria die, hexa-LPS is released into the gut. Diets high in fat, especially saturated fat, allow hexa-LPS to cross the intestinal barrier and eventually enter the bloodstream. High levels of hexa-LPS in the blood have been observed in individuals with heart disease, type 2 diabetes, obesity, and non-alcoholic fatty liver disease. If you have a high potential to produce hexa-LPS, you may wish to avoid excessive consumption of saturated fat. Dietary sources of saturated fat include butter, coconut oil, cheese, processed meats, chocolate, icecream, cakes and biscuits.

EVIDENCE RATING ★★★★★

# Your key insights

## Your gut microbiome's ability to break down fibre

**This is a good level!** Your potential to break down fibre is similar to the healthy group in this sample. This is an important gut microbiome function to maintain because it results in the production of beneficial substances that promote good gut health. To ensure the production of these beneficial compounds ensure your diet contains plenty of fibre.

**A This sample reported a level similar to the healthy group**

Fibre-degrading bacteria are responsible for producing important by-products such as short chain fatty acids which play a critical role in keeping your gut healthy. Specific prebiotic fibres—detailed in your food suggestions—will promote the growth of your beneficial, fibre-degrading bacteria. A similar or high proportion of species that can break down fibre compared to the healthy group is considered beneficial.

EVIDENCE RATING ★★★★☆

## Your gut microbiome's ability to break down protein

**This is a typical level.** The proportion of bacteria present in your sample that can break down protein is at level similar to the healthy group. When protein is broken down by bacteria in the gut microbiome it can lead to the production of substances that promote inflammation. To maintain this level, continue eating diverse sources of fibre to encourage the growth of your fibre-degrading bacteria instead of your protein-degrading bacteria.

**A This sample reported a level similar to the healthy group**

Everyone's microbiome contains species that can break down protein into a variety of compounds, including some compounds that promote inflammation. Having a high proportion of these species may reflect an insufficient amount of fibre in the diet or an excessive intake of protein. A high proportion of protein-degrading bacteria suggests that not enough fibre is reaching the lower colon to feed the bacteria that specialise in eating fibre.

EVIDENCE RATING ★★★★☆

# Your key insights

## Your microbiome's potential to produce branched chain amino acids

**This is a good level!** Your potential to produce branched chain amino acids is at a level similar to the healthy group. This is good, as bacterially produced BCAAs are observed to be associated with obesity and insulin resistance.

**A This sample reported a level similar to the healthy group**

BCAAs play an important role in building muscles and in helping regulate fat and sugar metabolism. However, a high potential to produce BCAAs by your gut microbiome may not be a good thing as high levels of bacterially produced BCAAs have been observed in individuals with obesity and insulin resistance. Having a low or similar potential to produce branched chain amino acids (BCAAs) compared to the healthy group is generally considered beneficial. Maintaining muscle mass through regular resistant exercise could help regulate BCAA blood levels.

EVIDENCE RATING ★★★★☆

## Your microbiome's potential to contribute to cardiovascular disease

**This is a good level!** Your potential to produce trimethylamine (TMA) is at a level similar to the healthy group. Trimethylamine is converted by the human liver into trimethylamine oxide (TMAO) which has been linked to cardiometabolic conditions. Plant chemicals known as indoles have been shown to reduce the production of TMAO.

**A This sample reported a level similar to the healthy group**

A similar or low potential to produce trimethylamine compared to the healthy group is generally considered beneficial. Trimethylamine is converted by the human liver into trimethylamine oxide (TMAO) which has been linked to cardiovascular and chronic kidney disease. Diets high in animal protein and low in fibre have been associated with increased trimethylamine production by gut microbes while plant chemicals known as indoles have been shown to reduce the production of TMAO.

EVIDENCE RATING ★★★★☆

# Your key insights

## Your microbiome's potential to protect your nervous system

**This is a good level!** Your potential to produce indolepropionic acid (known as IPA) is similar to the healthy group. This is good, because IPA is a strong antioxidant that can protect nerve cells from damage and may help protect against insulin resistance.

**A This sample reported a level similar to the healthy group**

IPA is a strong antioxidant produced by our gut bacteria that performs many important functions in our gut. It can protect nerve cells from damage, suppress inflammation and may protect against insulin resistance and type 2 diabetes. Consuming foods high in fibre and in particular rye, has been correlated to increased IPA production in the gut. A similar or high potential to produce indolepropionic acid (IPA) compared to the healthy group is considered beneficial.

EVIDENCE RATING ★★★★☆

## Your microbiome's potential to prevent kidney stones

**This is a good level!** Your potential to degrade oxalates is high. This may reduce your risk of developing calcium oxalate kidney stones.

**A This sample reported a level higher than the healthy group**

The gut microbiome of individuals who suffer from frequent kidney stones often have a low potential to degrade oxalate. Oxalate is one of the main components of calcium oxalate kidney stones. If you are prone to kidney stones, you may need to discuss trialling a low oxalate diet with a health care professional. However, if you do not suffer from kidney stones then your potential to degrade oxalate is not of concern. A similar or high potential to break down oxalate compared to the healthy group is generally considered beneficial.

EVIDENCE RATING ★★★★☆

# Your key insights

## Your gut microbiome's potential to produce strong-smelling flatulence

**This is not a good level.** Your potential to produce hydrogen sulphide is at a high level. Try adding foods high in prebiotic fibres, especially those foods containing resistant starch (RS) and fructooligosaccharides (FOS) such as cooked and cooled potatoes/sweet potatoes, rye, slightly green bananas, nectarines, and pears to reduce the production of hydrogen sulphide, which when produced by gut bacteria, has been associated with an impaired gut barrier function.

A

**This sample reported a level higher than the healthy group**

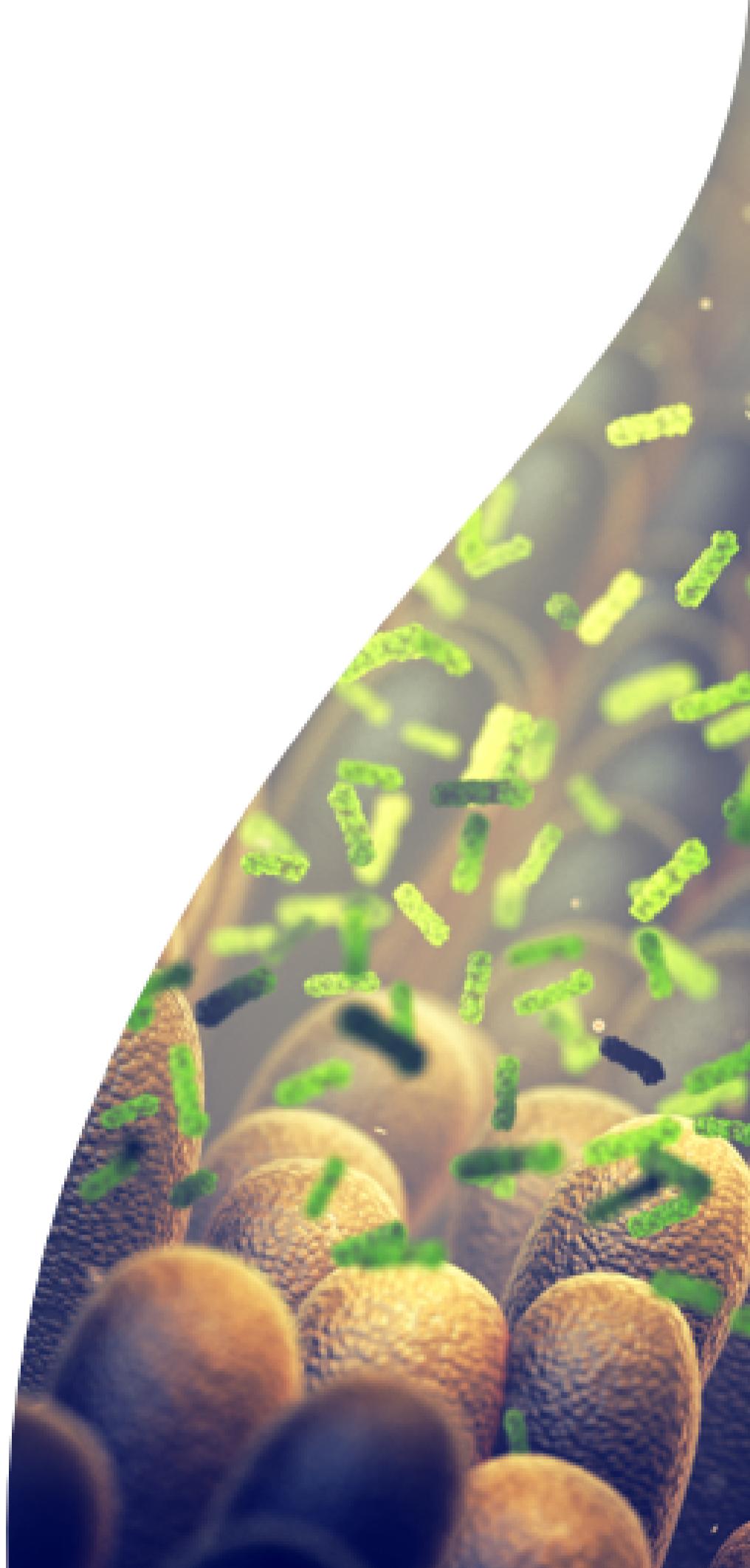
As the microbes in your gut digest different fuel sources, such as fibre, protein, mucus and even bile acids, they produce different types of gases as a by-product. Flatulence is primarily made up of odourless gases such as nitrogen, hydrogen, carbon dioxide, and methane. However, a small percent of flatulence can be made up of the gas hydrogen sulphide, which gives flatulence the characteristic rotten eggs smell. A small amount of hydrogen sulphide gas has been found to be protective of the gut, however a high potential to produce hydrogen sulphide has been associated with mitochondrial dysfunction and impaired gut barrier function. Research has found that the production of hydrogen sulphide by gut bacteria can be inhibited by consuming foods high in the prebiotic fibres resistant starch (RS) and fructooligosaccharides (FOS).

EVIDENCE RATING ★★★★☆

## Your microbiome's potential to contribute to cell replication and repair

**This is a good level!** Your gut microbiome's potential to produce folate is at a higher level than the healthy group. Folate is important for cell replication and repair. Your gut microbiome has the potential to contribute up to 37% of your daily folate requirement.

A

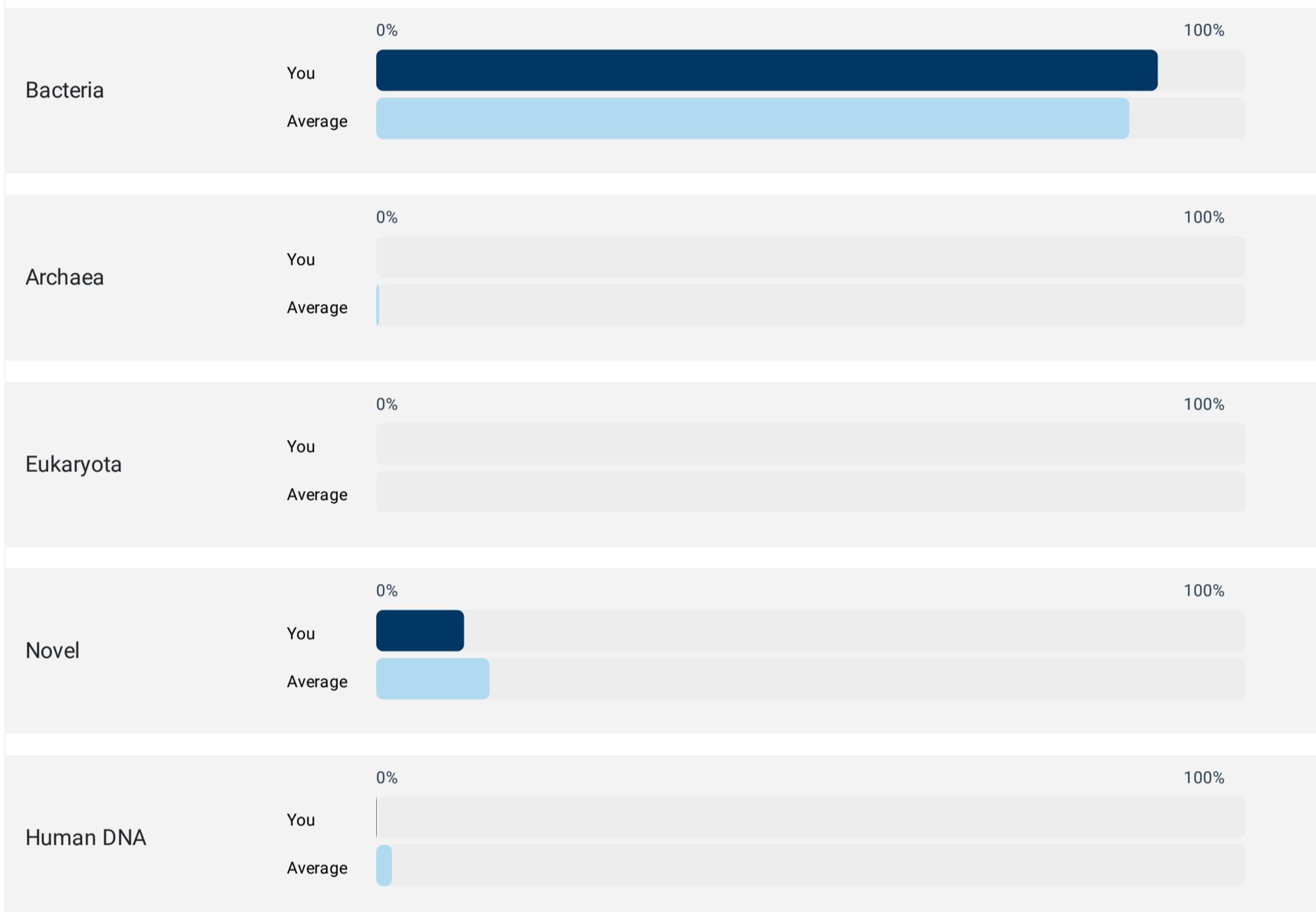

**This sample reported a level higher than the healthy group**

Folate plays an important role in cell replication and repair. Deficiencies can result in an increased risk of heart disease, anaemia, and stroke in adults. We cannot produce folate on our own and it is primarily obtained from plants in our diet (e.g. dark green leafy vegetables, fruits and legumes) and bacteria living in our gut. This bacterial production can supplement your body's folate requirements. A similar or high potential to produce folate compared to the healthy group is generally considered beneficial.

EVIDENCE RATING ★★★★☆

# Digging deeper into the detail

Gut microbiome report

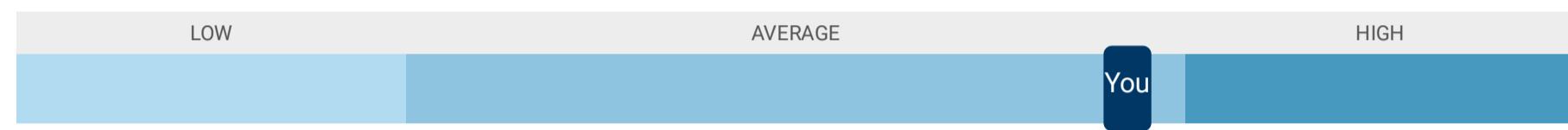



powered by  
**MICROBA**

# Sample Composition

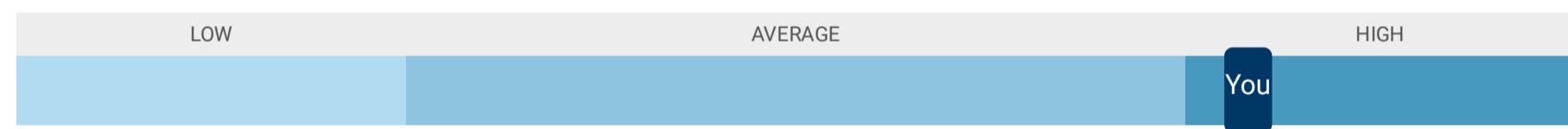
## SAMPLE COMPOSITION

Most of the DNA in your stool (~99%) is from microorganisms and only a small amount (~1%) is from you. The microorganisms in your gut fall into four main groups: bacteria, archaea (another form of microscopic life), eukaryotes (this includes fungi and parasites) and viruses. Below we show the levels of bacteria, archaea, eukaryotes, and novel (unidentifiable) DNA in your sample. The amount of human DNA in your sample is also shown. A high amount (greater than 4%) of human DNA may indicate gut inflammation. If you have greater than 4% human DNA, and you did not accidentally touch your swab during sampling, you should consult with a health care practitioner.



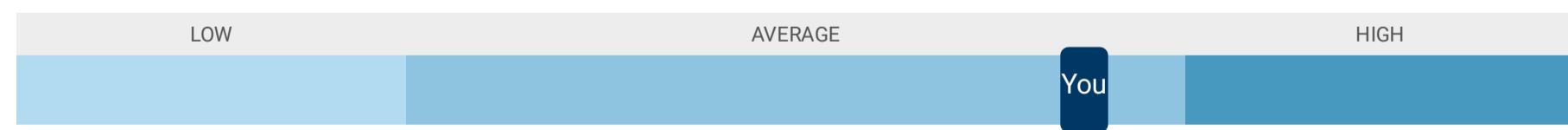

# Microbiome Digestion Potential

The source of food that bacteria can use varies between different species of gut bacteria. Below we show the proportion of species in your gut microbiome that can break down the fuel sources fibre, protein and mucin (mucus). After you eat a meal, food gets broken down in your stomach and travels to your small intestine, where most nutrients are absorbed. The food components that cannot be absorbed in the small intestine, such as fibre and excess protein, make their way to your large intestine where your gut microbiota transform these components into a variety of products called metabolites. These metabolites can play an important role in your health. Read more about each of the fuel sources and their links to health on each of the tabs below.


## FIBRE

This scale indicates the proportion of species in your gut microbiome that can break down fibre. If you have a low proportion, consider adding more fibre to your diet to improve your gut health. Fibre is the main energy source of gut bacteria, who break it down into beneficial metabolites such as short chain fatty acids and B vitamins. Short chain fatty acids such as butyrate play an important role in keeping us healthy, and is one of the reasons fibre is an important component of a healthy diet.




## MUCIN

This scale indicates the proportion of species in your gut microbiome that can break down mucin, a component of the protective mucus layer that lines our gut. Some bacteria can use mucin as a fuel source. Mucus turnover is a normal part of our gut function, however when the abundance of bacteria that eat mucus becomes too high, this can result in a thinning of the mucus layer and activation of the immune system. Our mucus layer is important because it serves as a protective barrier between the cells lining our gut and harmful bacteria. Mucus-degrading bacteria may increase in abundance when there is not enough fibre reaching the lower large intestine, allowing gut bacteria that can use mucus as an energy source to multiply.



## PROTEIN

This scale indicates the proportion of species in your gut microbiome that can break down protein. If you have a high proportion, consider reducing the amount of protein in your diet to improve gut health. Although most protein is absorbed by your body, excess protein that is not absorbed will pass to your gut microbiome. The metabolites produced from the break down of protein are varied, with some being beneficial and others promoting inflammation. Diets high in animal protein and low in fibre have been observed to increase levels of pro-inflammatory gut metabolites.



# Microbial Metabolites

Your gut bacteria can produce thousands of different substances, called metabolites, when they use different fuel sources for energy. These metabolites can interact with our immune, metabolic and nervous systems to influence our health. Some of these metabolites promote good health while others promote poor health.



# Microbial Metabolites

Below we show the potential of your gut microbiome to produce or consume different metabolites associated with health and disease. The microorganisms in your gut can transform the food components you eat into thousands of products called metabolites. Some metabolites have been associated with health benefits while others have been associated with disease. Compare your microbiome's potential to produce and consume some of these metabolites with your selected comparison group. A '+' sign next to the compound name indicates it is associated with health and a '-' sign indicates it is associated with disease.

## HEALTH INDICATORS

### Produced



**This metabolite is not detected in this microbiome.**

Hexa-lipopolysaccharide (hexa-LPS) is a pro-inflammatory compound produced by some species of bacteria within the Proteobacteria phylum. High levels of hexa-LPS in the blood have been observed in individuals with metabolic and inflammatory conditions such as obesity, heart disease, type 2 diabetes and non-alcoholic fatty liver disease. Diets high in fat, especially saturated fat, allow hexa-LPS to cross the intestinal barrier and enter the bloodstream. Avoiding excessive intake of saturated fat can help reduce the ability of hexa-LPS to enter the bloodstream. Common dietary sources of saturated fats include butter, coconut products, palm oil, cheese, fatty meats, biscuit, cakes, chocolate and icecream.

[\[1\]](#) [\[2\]](#) [\[3\]](#) [\[4\]](#) [\[5\]](#) [\[6\]](#)



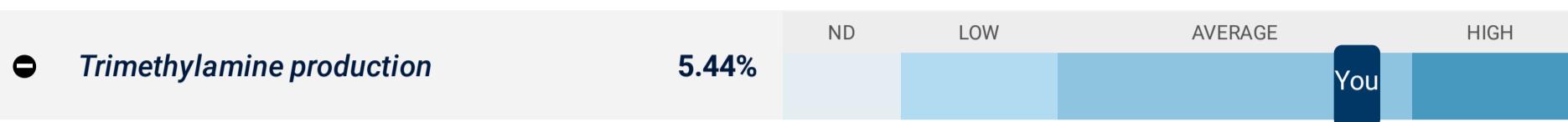
**This metabolite is not detected in this microbiome.**

The gas methane can be produced by some species of the gut microbiome, primarily through the reduction of carbon dioxide and hydrogen. Although methane production is often detected in healthy adult populations, elevated levels of methane production has been associated with slower intestinal transit times and constipation.

[\[1\]](#) [\[2\]](#) [\[3\]](#) [\[4\]](#)



**The abundance of this metabolite is about the same as the comparison group.**


Some lactic acid bacterial species can produce a special form of lactate called D-lactate. As a form of lactate, it has the beneficial properties of being able to reduce inflammation, help maintain the gut cell barrier, and reduce colonisation by pathogens by lowering the pH in the gut. However, this form is not metabolised by our body as quickly and in rare cases in individuals with short bowel syndrome, D-lactate can build up and cause D-lactic acidosis.

[\[1\]](#) [\[2\]](#) [\[3\]](#)

# Microbial Metabolites

## HEALTH INDICATORS

### Produced



**The abundance of this metabolite is about the same as the comparison group.**

A high potential to produce trimethylamine has been correlated to heart disease and type 2 diabetes. Once trimethylamine is produced by gut microbes, it is transported to the liver and converted to trimethylamine-n-oxide (TMAO). TMAO has been shown to be involved with blood sugar control, blood clotting and inflammation.

The indoles diindolylmethane (DIM) and indole-3-carbinol (I3C) found in cruciferous vegetables (e.g. broccoli, cauliflower, cabbage, kale) may reduce the amount of trimethylamine that is converted to TMAO in the liver. In addition, excessive red meat consumption is associated with increased levels of TMAO in the blood. If your potential to produce trimethylamine is high, you may wish to increase your consumption of cruciferous vegetables and avoid eating excessive amounts of red meat. The Heart Foundation recommends limiting red meat consumption to less than 350g per week.

[\[1\]](#) [\[2\]](#) [\[3\]](#) [\[4\]](#) [\[5\]](#) [\[6\]](#) [\[7\]](#)



**The abundance of this metabolite is about the same as the comparison group.**

Ammonia production is a normal way that bacteria recycle protein in the gut. However, high levels of ammonia production have been observed in individuals with impaired gut barrier function and inflammation of the gut.

[\[1\]](#) [\[2\]](#)



**This metabolite is not detected in this microbiome.**

Most people's gut microbiome contain a species of bacteria called *Bacteroides fragilis*. A small proportion of *B. fragilis* strains have the ability to secrete a toxin. In some people this toxin can cause symptoms such as diarrhea while other people can remain symptom free. There are concerns that this toxin can cause intestinal inflammation. If you are experiencing diarrhea and have this toxin, consider seeing a healthcare practitioner.

[\[1\]](#) [\[2\]](#)



**The abundance of this metabolite is about the same as the comparison group.**

Beta-glucuronidase is a bacterial enzyme which can limit the excretion of compounds from the body such as medications, hormones and environmental toxins. One human study has suggested that consuming glucomannan can reduce faecal beta-glucuronidase activity. Glucomannan is a type of prebiotic fibre found in konjac root which is commonly used to make low calorie pasta and noodles.

[\[1\]](#) [\[2\]](#)

# Microbial Metabolites

## HEALTH INDICATORS

### Produced



**The abundance of this metabolite is higher than the comparison group.**

The gas hydrogen sulphide is produced by bacteria when they break down sulphur-containing amino acids found in foods such as eggs, meat, and fish. This gas is responsible for the rotten egg smell of flatulence. At low to average levels, hydrogen sulphide can play a beneficial role by acting as an energy source for gut cells. However at high levels hydrogen sulphide can inhibit energy production in gut cells and disrupt the gut mucus barrier. Elevated levels of hydrogen sulphide have been associated with inflammatory bowel disease (IBD). Laboratory based studies have suggested that eating foods high in resistant starch (e.g. lentils, peas, beans, rolled oats and cooked and cooled potatoes) or fructooligosaccharides (FOS) (e.g. onions, garlic, leek, banana, peaches, wheat, barley) can reduce the production of hydrogen sulphide by the microbiome.

[\[1\]](#) [\[2\]](#)



**The abundance of this metabolite is about the same as the comparison group.**

Branch chain amino acids (BCAAs) are involved in the regulation of glucose and fat metabolism and the immune system. High levels of BCAAs have been associated with metabolic diseases, such as obesity and type 2 diabetes. Muscle plays an important role in regulating BCAA levels. A high potential to produce BCAAs has also been associated with people who have a diet that is low in fibre. Maximising muscle mass through regular physical activity can help maintain metabolic balance.

[\[1\]](#) [\[2\]](#)

# Microbial Metabolites

## HEALTH INDICATORS

### Consumed



**The abundance of this metabolite is higher than the comparison group.**

Some bacteria can break down oxalates in the colon, thus reducing the risk of forming calcium oxalate kidney stones. People who suffer from repeated unexplained kidney stones are observed to have a low potential for oxalate degradation in their microbiome compared to non-stone formers. A similar or high level to degrade oxalate compared to the healthy group is considered optimal, however if you do not suffer from kidney stones your gut microbiome's potential to degrade oxalate is not a concern. If your microbiome has a low potential to break down oxalate and you are prone to kidney stones, you may wish to discuss trialling a low oxalate diet with a health care professional.

[\[1\]](#) [\[2\]](#)

# Microbial Metabolites

## NEUROENDOCRINE

### Produced



**The abundance of this metabolite is about the same as the comparison group.**

GABA (gamma-aminobutyric acid) plays an important role in regulating mental state by calming the nervous system. Low levels of GABA being associated with depression and anxiety. Most GABA is produced in the brain however your gut microbiome may contribute to your GABA levels as some bacteria can produce or consume GABA. The role of gut bacteria that produce GABA in anxiety and depression is currently not understood. If you are concerned about your mental health, it is important to seek professional help.

[\[1\]](#) [\[2\]](#) [\[3\]](#)



**The abundance of this metabolite is about the same as the comparison group.**

3-indolepropionic acid (IPA) is a beneficial substance produced by some gut bacteria when they break down the amino acid tryptophan. It is a strong anti-oxidant that can help protect the nervous system from damage. Research has also shown that IPA may play a role in the prevention of type 2 diabetes and research in animal models suggests that IPA may suppress inflammation and help maintain the gut barrier. Studies have indicated that consuming foods high in dietary fibre, and in particular rye, can help increase IPA production.

[\[1\]](#) [\[2\]](#) [\[3\]](#) [\[4\]](#)



**The abundance of this metabolite is about the same as the comparison group.**

Histamine is a chemical produced by the breakdown of the amino acid histidine. It is produced by human cells and also by some bacterial species in the gut. It plays an important role in immune regulation, gut function and the nervous system. Gut bacteria that can produce histamine have been observed at increased levels in patients with asthma. Additionally, people with food allergies and irritable bowel syndrome may be more sensitive to histamine in the gut.

[\[1\]](#) [\[2\]](#) [\[3\]](#)

# Microbial Metabolites

## NEUROENDOCRINE

### Consumed



#### **The abundance of this metabolite is higher than the comparison group.**

GABA (gamma-aminobutyric acid) plays an important role in regulating mental state by calming the nervous system. Low levels of GABA being associated with depression and anxiety. Most GABA is produced in the brain however your gut microbiome may contribute to your GABA levels as some bacteria can produce or consume GABA. The role of gut bacteria that consume GABA in anxiety and depression is currently not understood. If you are concerned about your mental health, it is important to seek professional help.

[\[1\]](#) [\[2\]](#) [\[3\]](#)

# Microbial Metabolites

## SHORT CHAIN FATTY ACIDS

### Produced



**The abundance of this metabolite is about the same as the comparison group.**

Butyrate is a beneficial short chain fatty acid that is very important for gut health. It is the main fuel source for gut cells, helps keep the gut cell barrier intact, suppresses inflammation, helps control appetite, and promotes the production of serotonin in the gut. Low levels of butyrate production have been observed in individuals with inflammatory bowel diseases. Consuming foods high in resistant starch (e.g. lentils, peas, beans, cooked and cooled potatoes, rolled oats) or pectin (e.g. avocado, kiwifruit, berries, citrus fruits, pumpkin, zucchini) have been shown to increase butyrate levels.

[\[1\]](#) [\[2\]](#) [\[3\]](#) [\[4\]](#) [\[5\]](#) [\[6\]](#) [\[7\]](#) [\[8\]](#)



**The abundance of this metabolite is higher than the comparison group.**

Lactate, or lactic acid, is a beneficial substance produced by our gut bacteria. It can reduce inflammation, help maintain the gut cell barrier, and protect from gut infections by lowering the pH in the gut. Lactate can also be converted by some bacterial species to beneficial short chain fatty acids. Lactate or lactic-acid producing bacteria have a long tradition of being used to produce fermented foods such as yoghurt, kefir, sauerkraut and kimchi.

[\[1\]](#) [\[2\]](#)



**The abundance of this metabolite is about the same as the comparison group.**

Propionate is a beneficial short chain fatty acid that is important for gut health. It helps maintain blood glucose levels, can reduce inflammation, helps control appetite and promotes the production of serotonin from the gut. The prebiotic fibre beta-glucan, found in oats and barley, has been shown to increase propionate production.

[\[1\]](#) [\[2\]](#) [\[3\]](#) [\[4\]](#) [\[5\]](#) [\[6\]](#)

# Microbial Metabolites

## SHORT CHAIN FATTY ACIDS

### Produced



**The abundance of this metabolite is about the same as the comparison group.**

Acetate is the most abundant short chain fatty acid produced by our gut microbiome. It plays a beneficial role by suppressing inflammation, regulating appetite, and regulating fat metabolism. Several bacterial species can also convert acetate to the beneficial short chain fatty acid, butyrate. The consumption of wholegrains, fruits, vegetables, legumes, nuts and seeds are associated with increased short chain fatty acids, including acetate.

[\[1\]](#) [\[2\]](#) [\[3\]](#)

# Microbial Metabolites

## ESSENTIAL VITAMINS

### Produced



**The abundance of this metabolite is higher than the comparison group.**

Vitamin B12 is important for ensuring normal functioning of the nervous system and in the development of red blood cells. Although gut bacteria can produce this vitamin, humans are only able to absorb vitamin B12 in the small intestine, thus B12 produced in the large intestine will not be used by our body. However, bacteria also need vitamin B12 to function, so although our gut bacteria are unlikely to provide us with useable vitamin B12, an average to high potential to produce B12 means your bacteria will not compete with you for available vitamin B12. Reduced vitamin B12 production is often seen in the gut microbiome of people as they age and a study in elderly individuals observed that a multistrain probiotic increased plasma B12 levels. The most important dietary sources of vitamin B12 are meat, milk and dairy products.

[\[1\]](#) [\[2\]](#) [\[3\]](#)



**The abundance of this metabolite is higher than the comparison group.**

Folate or folic acid plays an important role in cell replication and repair. Low folate levels can result in anemia and have been linked to an increased risk of heart disease and stroke. Folate cannot be produced by human cells and must be obtained through diet or from the microbiome. The large intestine has the ability to absorb folate produced by the gut microbiome and it is estimated that the human gut microbiome can provide up to 37% of the daily folate requirement. All non-organic bread in Australia must be fortified with folic acid while rich dietary sources include dark green leafy vegetables, fruit, legumes, and nuts.

[\[1\]](#) [\[2\]](#) [\[3\]](#)



**The abundance of this metabolite is about the same as the comparison group.**

Biotin plays a critical role in metabolism and in the regulation of the immune system. Biotin cannot be produced by human cells and must be obtained through diet or the microbiome. The large intestine has the ability to absorb biotin but it is estimated that the gut microbiome can only provide up to 4.5% of the human daily biotin requirement. Dietary sources of biotin include liver, meat, fish, eggs and nuts.

[\[1\]](#) [\[2\]](#) [\[3\]](#) [\[4\]](#)

# Microbial Metabolites

## ESSENTIAL VITAMINS

### Produced



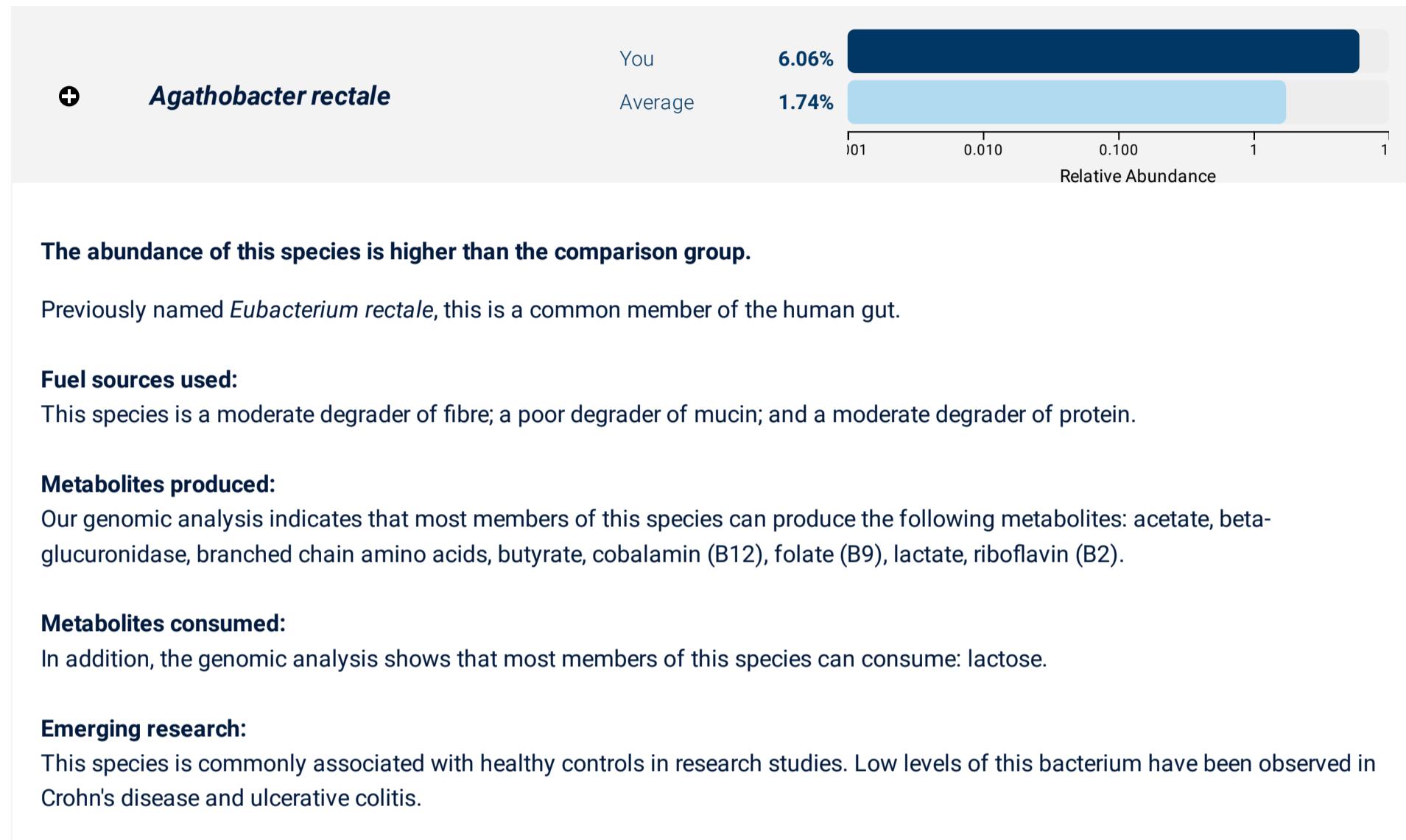
**The abundance of this metabolite is about the same as the comparison group.**

Riboflavin plays a crucial role in fat, vitamin B6, folate, tryptophan and homocysteine metabolism. Riboflavin cannot be produced by human cells and must be obtained through diet or the microbiome. The large intestine has the ability to absorb riboflavin but it is estimated that the gut microbiome can only provide up to 2.8% of the human daily riboflavin requirement. Dietary sources of riboflavin include milk and milk products, eggs, green vegetables, mushrooms and fortified breads and cereals.

[\[1\]](#) [\[2\]](#) [\[3\]](#)



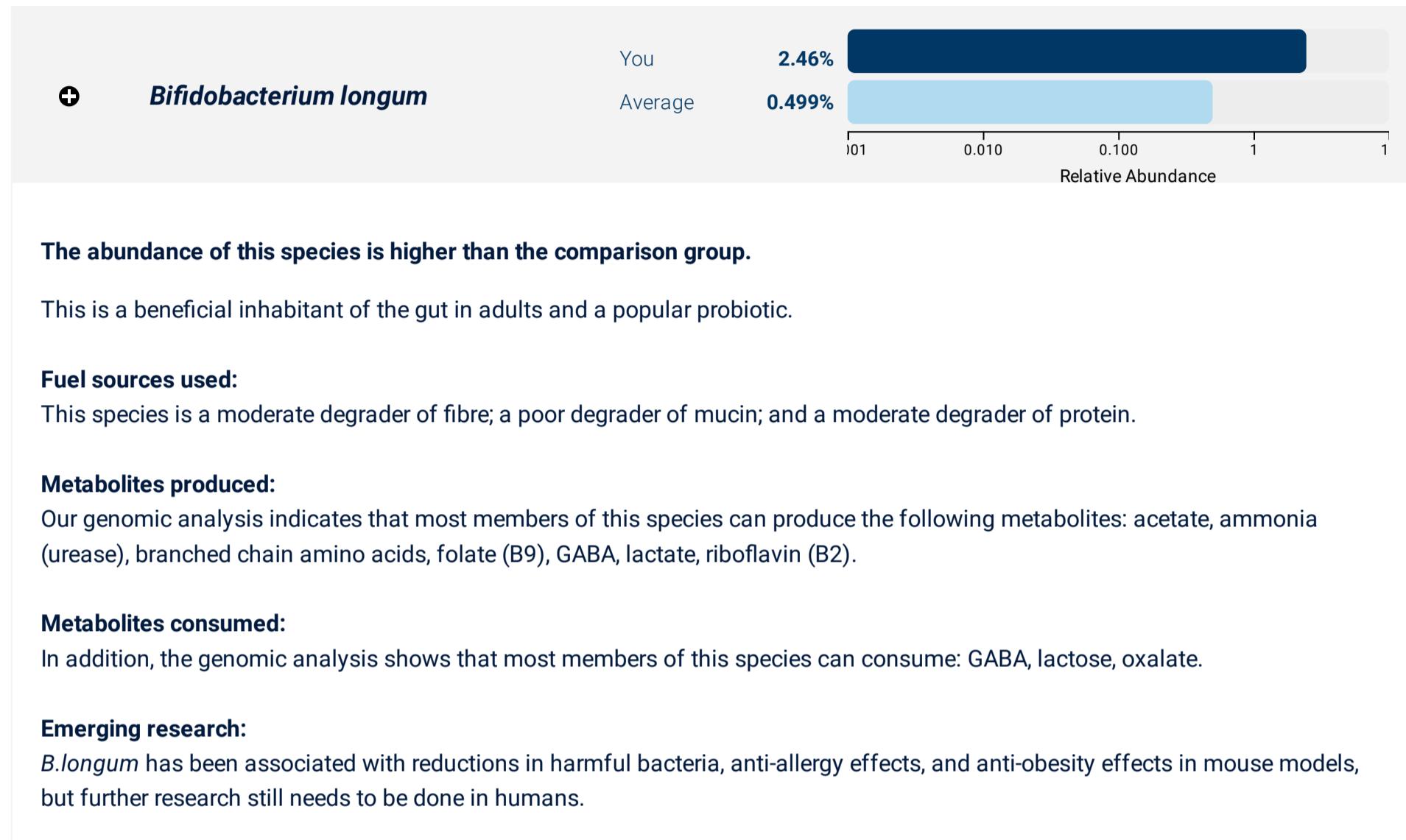
**The abundance of this metabolite is about the same as the comparison group.**


K vitamins are a family of fat soluble vitamins which play an important role in blood clotting. Vitamin K cannot be produced by human cells and must be obtained through diet or the microbiome. Vitamin K1 (phylloquinone) is found in plants such as dark green leafy vegetables and canola oil, and is the principal form of dietary vitamin K used by the body. Bacterially derived vitamin K (menaquinones) are produced by our gut bacteria and are found in fermented foods, dairy products and meat. The amount of bacterially derived vitamin K (menaquinones) that can be absorbed by the large intestine is still unknown.

[\[1\]](#) [\[2\]](#)

# Species of Interest

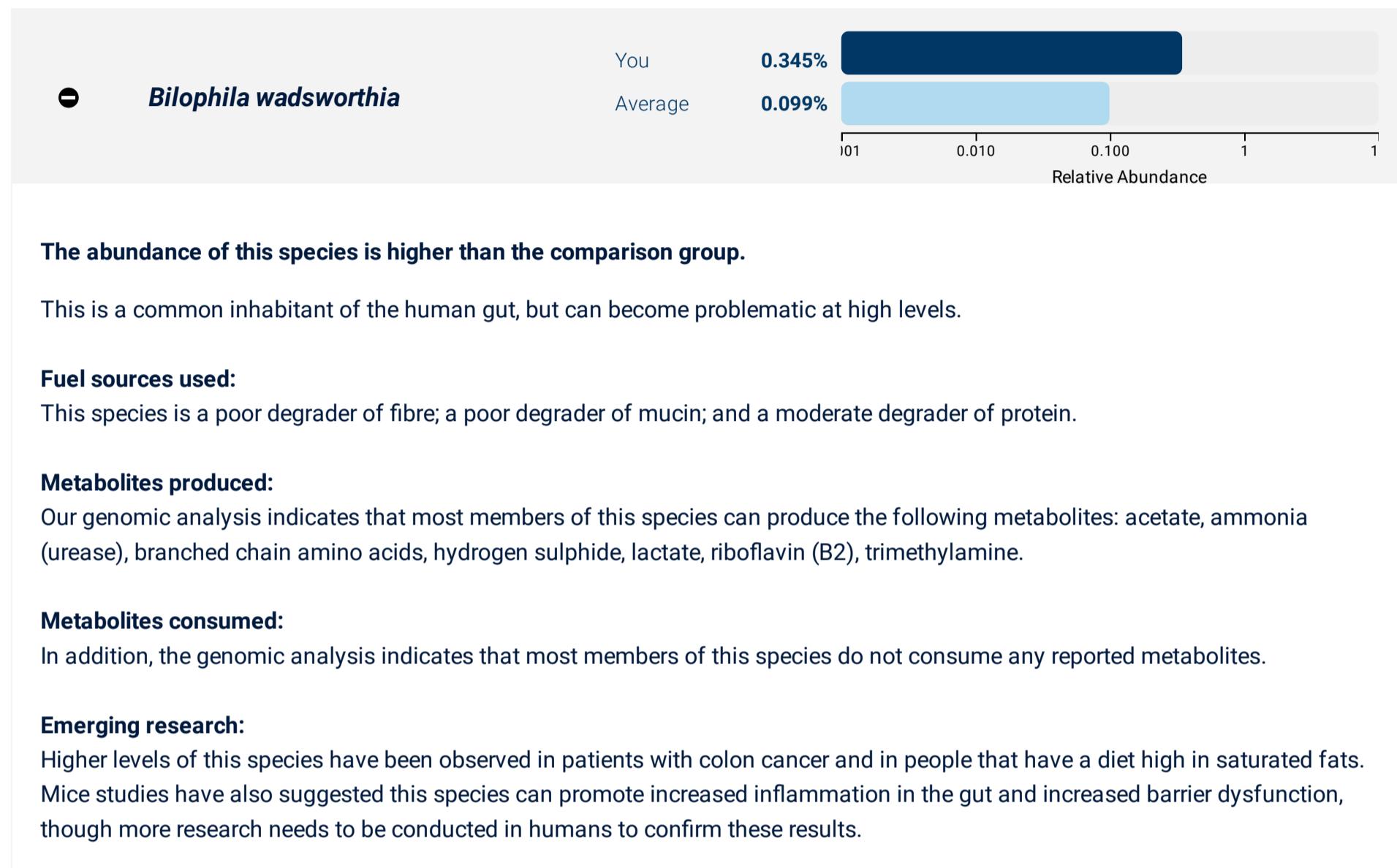
## SPECIES OF INTEREST


### Detected in you



# Species of Interest

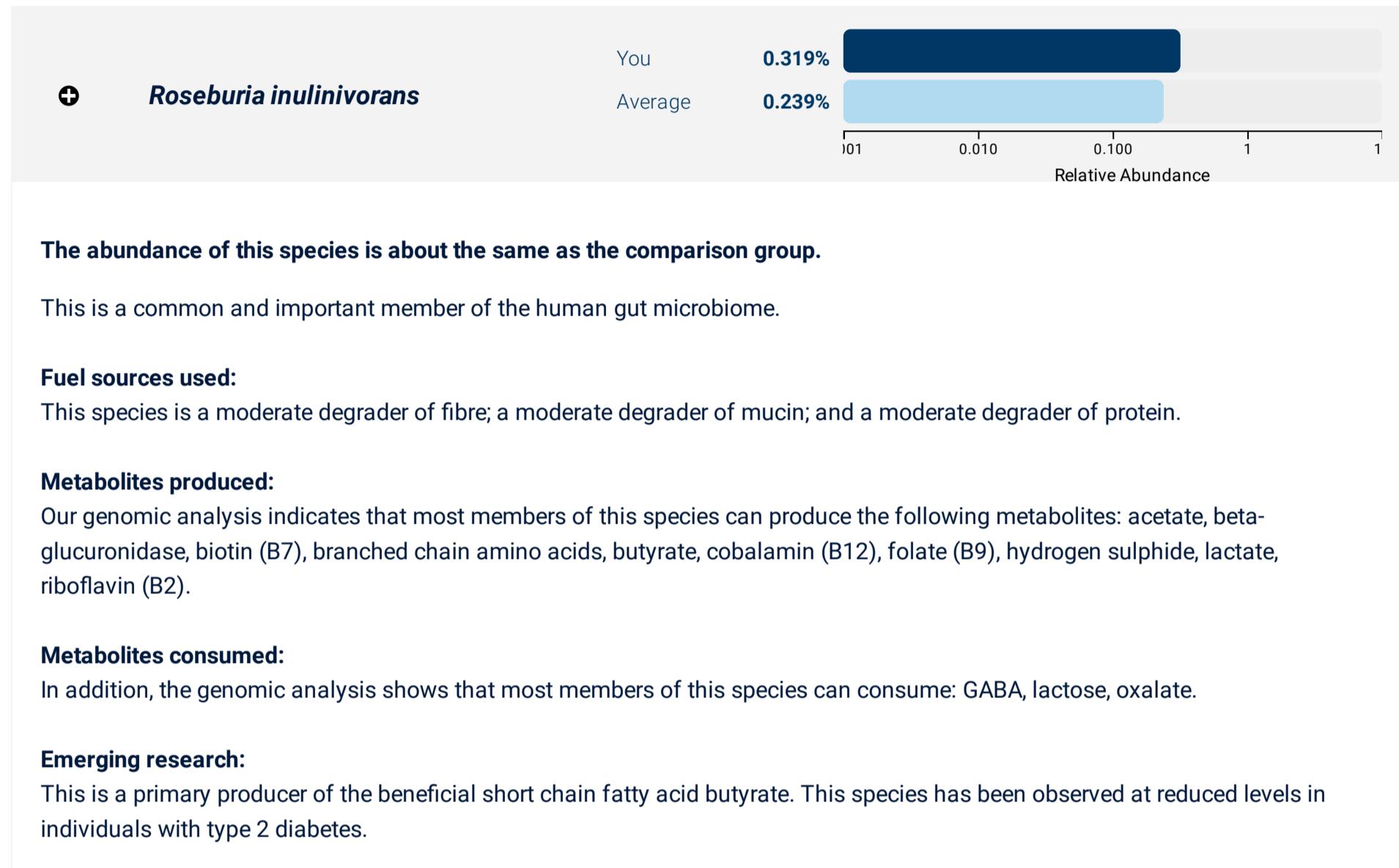
## SPECIES OF INTEREST


### Detected in you



# Species of Interest

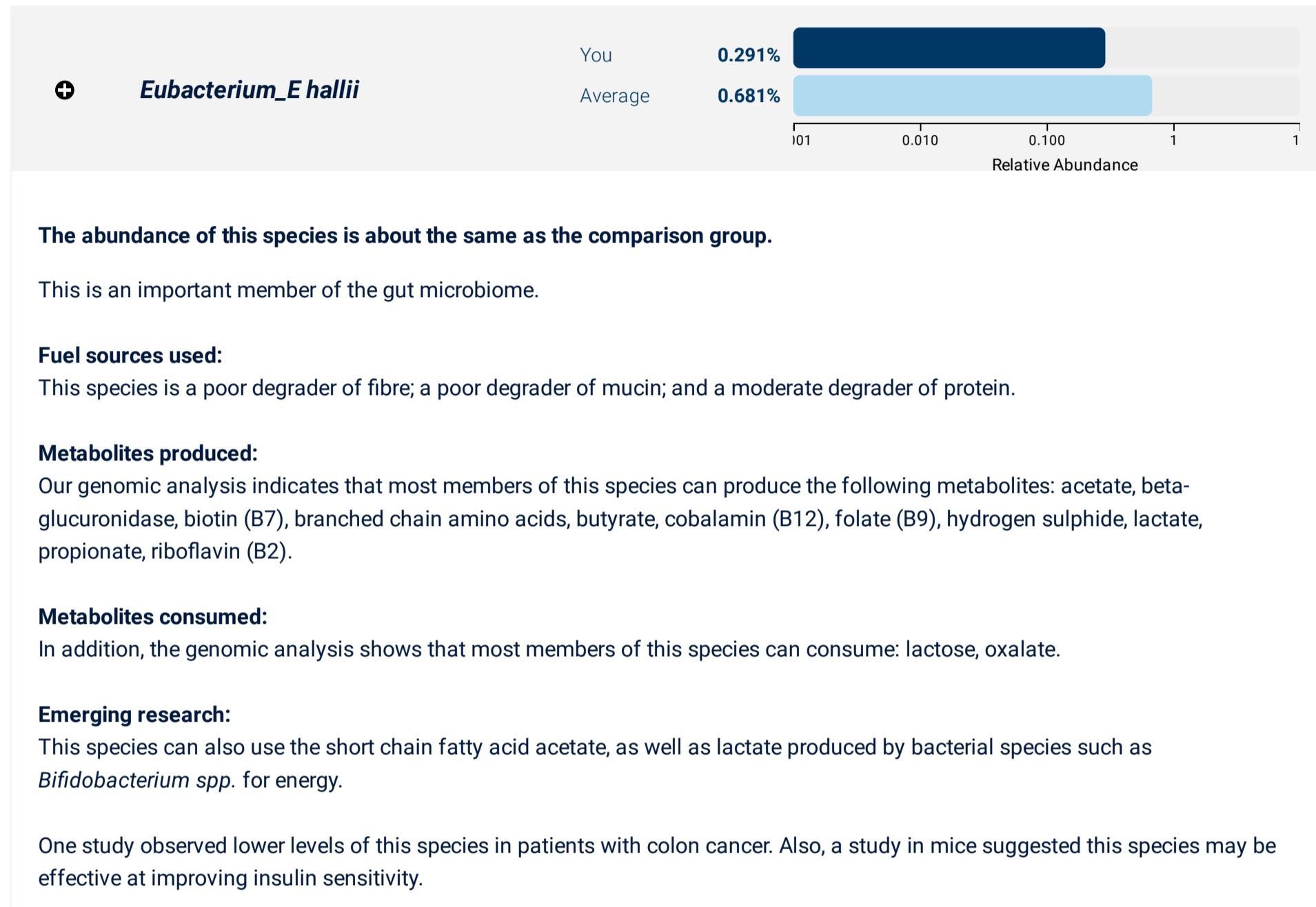
## SPECIES OF INTEREST


### Detected in you



# Species of Interest

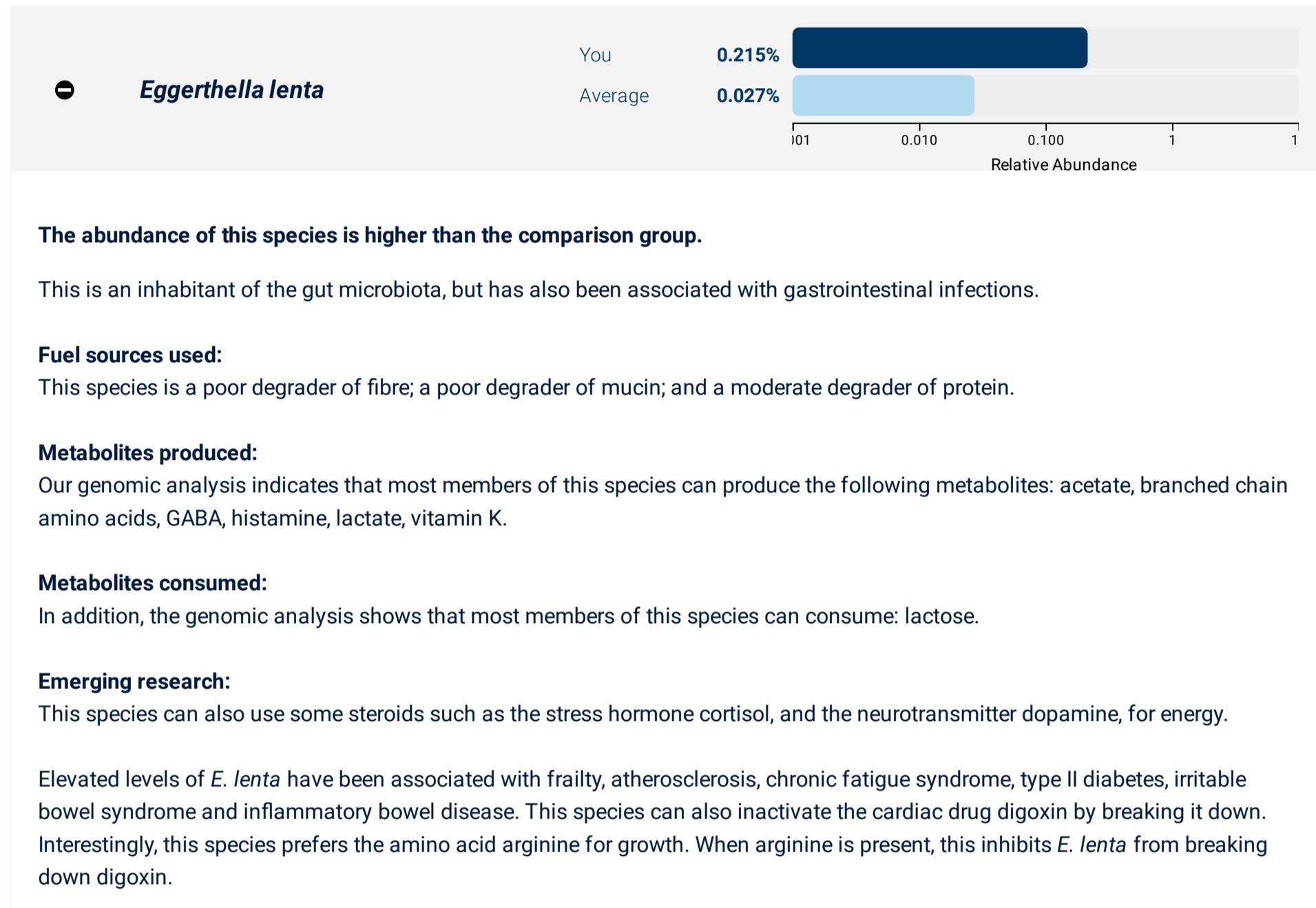
## SPECIES OF INTEREST


### Detected in you



# Species of Interest

## SPECIES OF INTEREST


### Detected in you



# Species of Interest

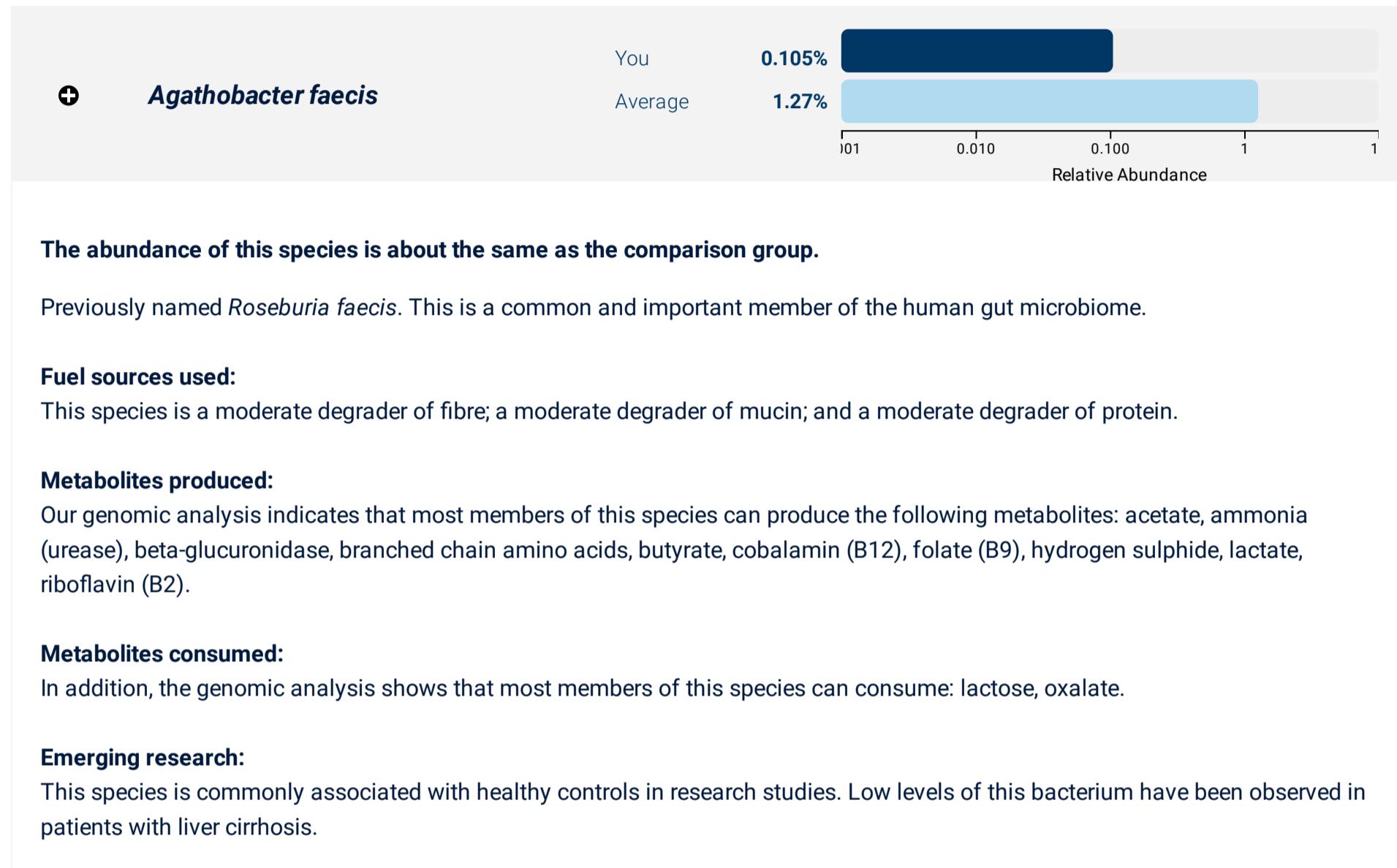
## SPECIES OF INTEREST

### Detected in you



# Species of Interest

## SPECIES OF INTEREST


### Detected in you



# Species of Interest

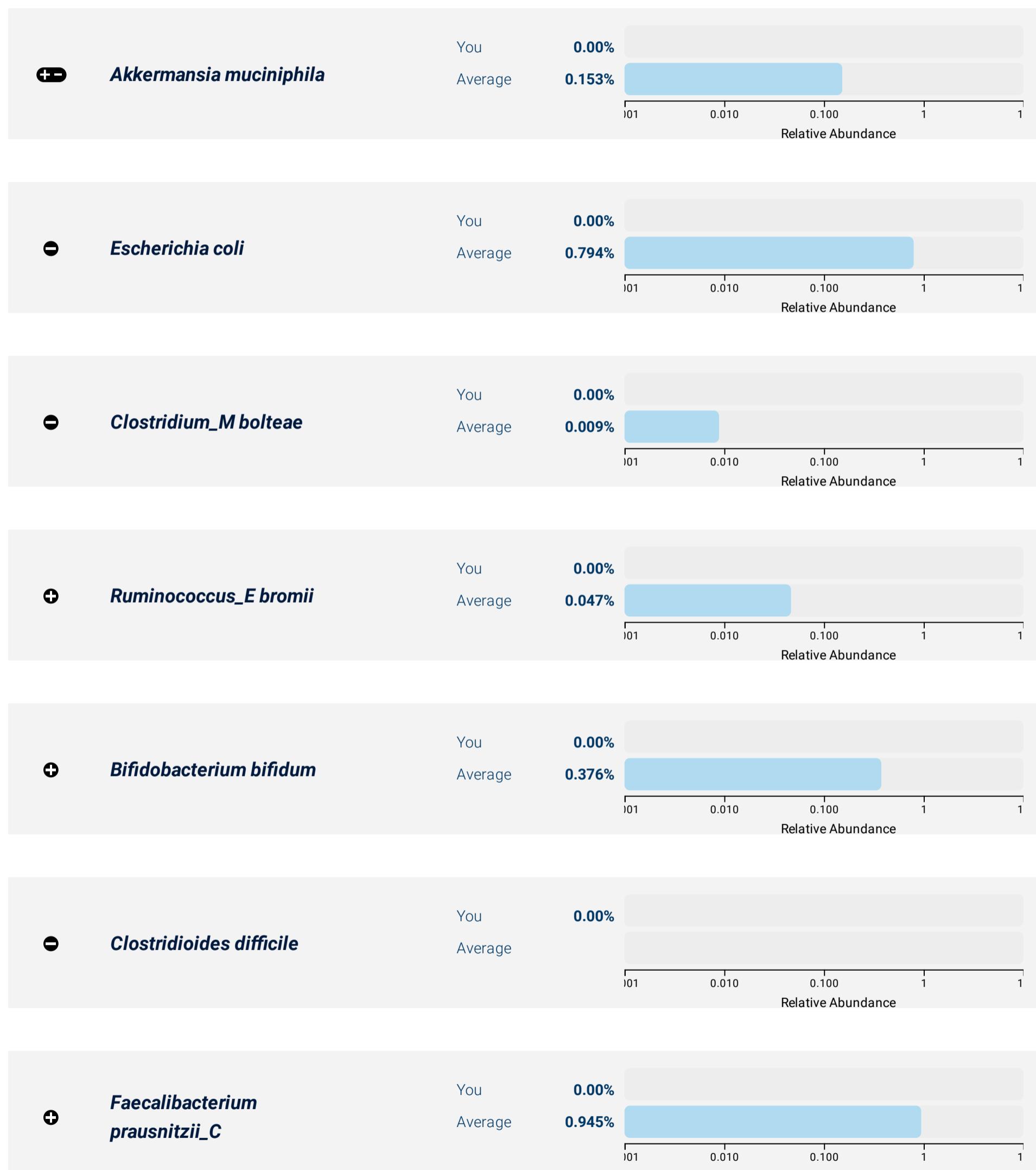
## SPECIES OF INTEREST

### Detected in you



# Species of Interest

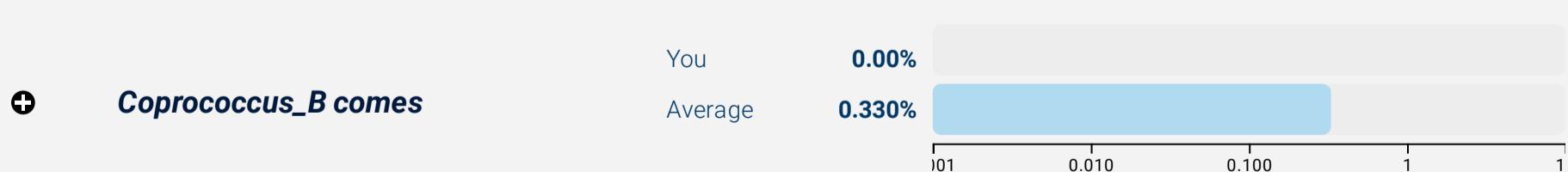
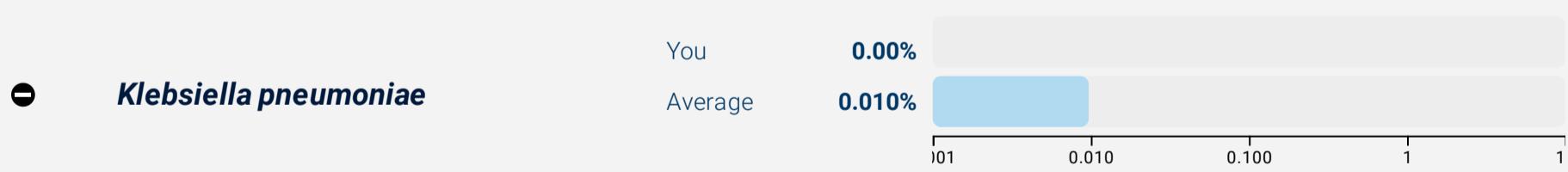
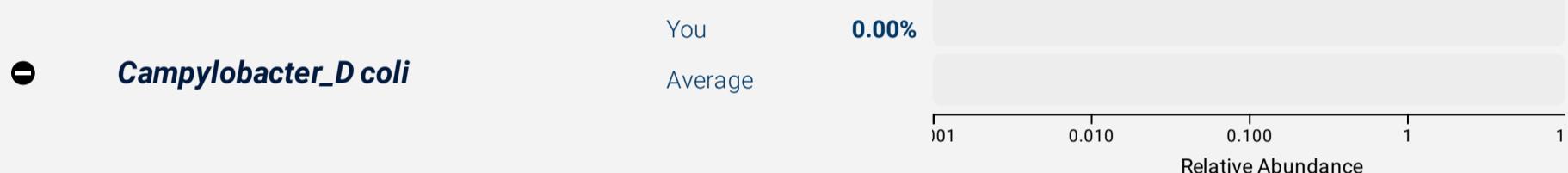
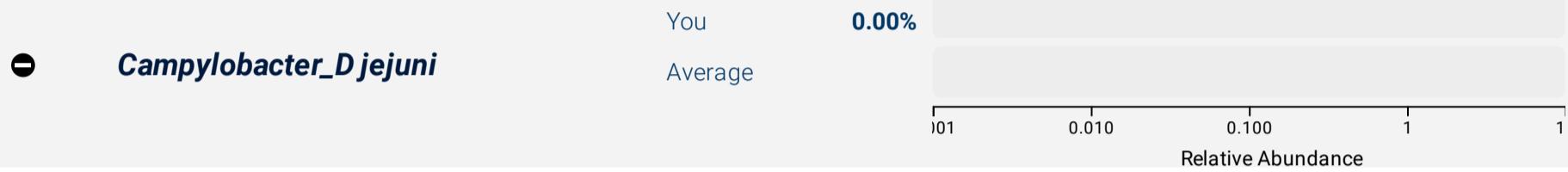
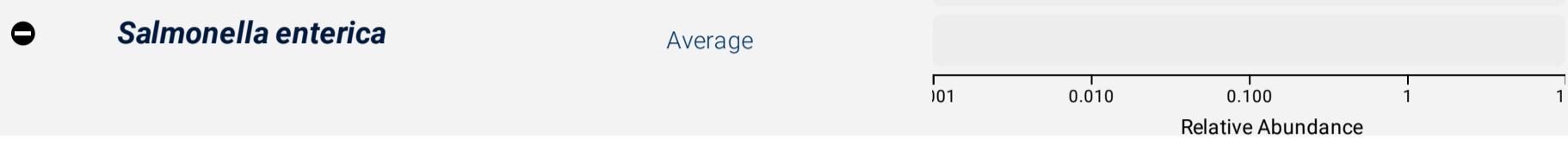
## SPECIES OF INTEREST


### Not detected in you



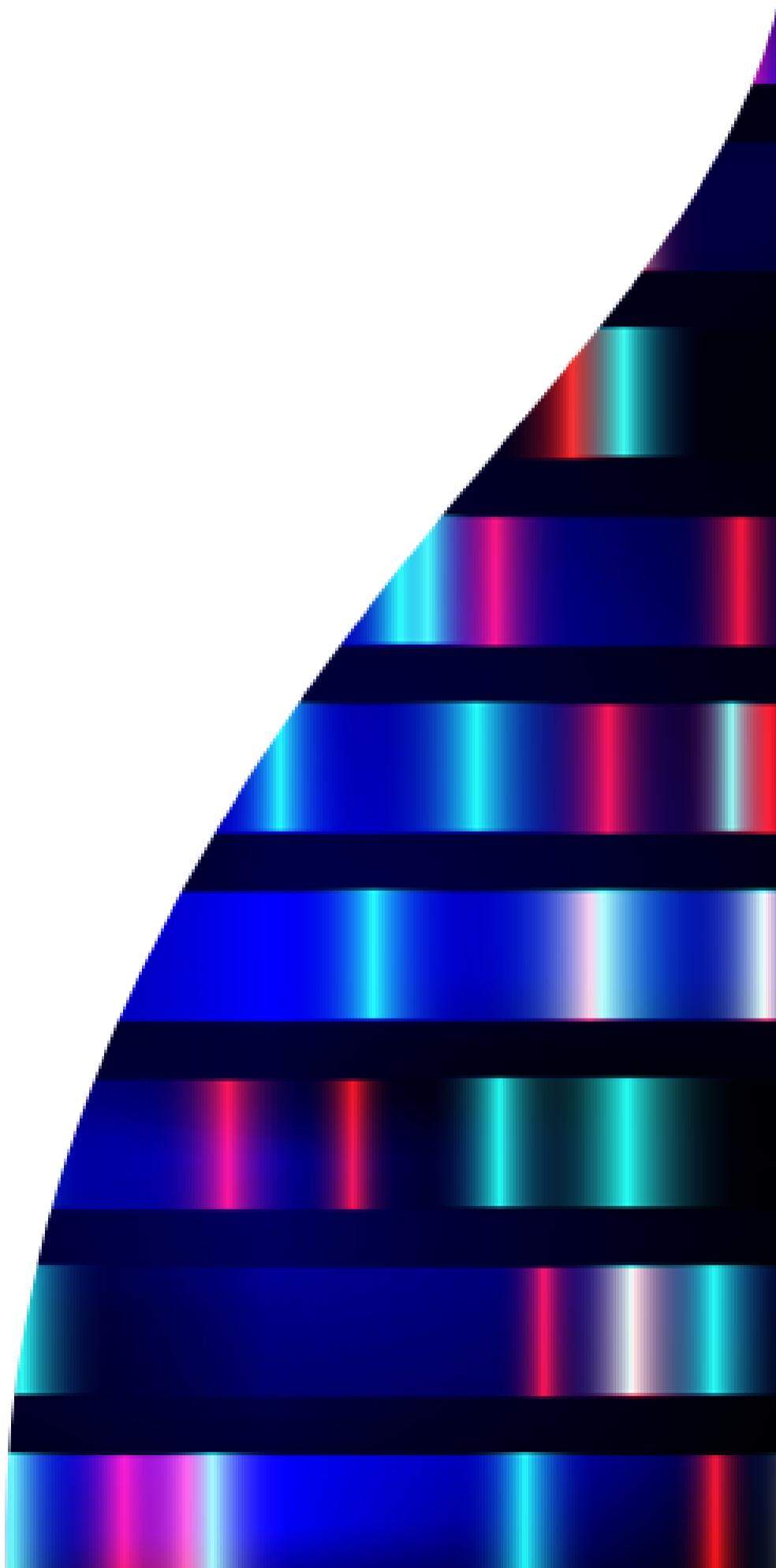
# Species of Interest

## SPECIES OF INTEREST






### Not detected in you



# Species of Interest


## SPECIES OF INTEREST

### Not detected in you



# Microbial Profile

This section shows the different bacteria, archaea and eukaryotes present in your gut. A phylum is the highest level of grouping (comprising hundreds to thousands of species), whereas a species is the most detailed view of your gut microbiome



powered by  
**MICROBA**

# Your Microbiome Profile

## PHYLUM



This Sample

| Phylum             | Abundance | Range          | Level   |
|--------------------|-----------|----------------|---------|
| Firmicutes_A       | 43.6%     | 32.7 - 58.7%   | Average |
| Bacteroidota       | 27.8%     | 16.5 - 35.0%   | Average |
| Actinobacteriota   | 10.6%     | 1.13 - 10.3%   | High    |
| Proteobacteria     | 5.76%     | 0.694 - 9.09%  | Average |
| Firmicutes         | 1.05%     | 0.743 - 9.80%  | Average |
| Firmicutes_C       | 0.696%    | 0.351 - 2.20%  | Average |
| Desulfobacterota_A | 0.345%    | 0.074 - 0.501% | Average |
| Cyanobacteria      | 0.094%    | 0.00 - 0.881%  | Average |

# Species Profile

## SPECIES

| Phylum         | Species                    | Abundance | Range        | Level |
|----------------|----------------------------|-----------|--------------|-------|
| - Bacteroidota | <i>Bacteroides_B dorei</i> | 11.2%     | 0.00 - 4.18% | High  |

This is a common inhabitant of the gut and is closely related to *Bacteroides vulgatus*.

**Fuel sources used:**

This species is a good degrader of fibre; a good degrader of mucin; and a moderate degrader of protein.

**Metabolites produced:**

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, ammonia (urease), beta-glucuronidase, biotin (B7), branched chain amino acids, cobalamin (B12), folate (B9), GABA, hydrogen sulphide, lactate, propionate, riboflavin (B2), vitamin K.

**Metabolites consumed:**

In addition, the genomic analysis shows that most members of this species can consume: GABA, lactose.

**Emerging research:**

Higher levels of this species have been observed in patients with colon cancer and during the development of type 1 diabetes in children. This species has also been associated with diets high in red meat.

|                    |                                          |       |               |      |
|--------------------|------------------------------------------|-------|---------------|------|
| + Actinobacteriota | <i>Bifidobacterium pseudocatenulatum</i> | 6.50% | 0.00 - 0.231% | High |
|--------------------|------------------------------------------|-------|---------------|------|

This is a beneficial bacterial species found in the human gut.

**Fuel sources used:**

This species is a moderate degrader of fibre; a moderate degrader of mucin; and a moderate degrader of protein.

**Metabolites produced:**

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, ammonia (urease), branched chain amino acids, folate (B9), lactate.

**Metabolites consumed:**

In addition, the genomic analysis shows that most members of this species can consume: lactose, oxalate.

**Emerging research:**

This species has been observed as lower in individuals with insulin resistance and gout. It has also has been associated with a protective effect on the liver and anti-obesity effects in mouse models, but further research still needs to be done in humans.

# Species Profile

## SPECIES

| Phylum | Species                                         | Abundance | Range        | Level |
|--------|-------------------------------------------------|-----------|--------------|-------|
| +      | Firmicutes_A <b><i>Agathobacter rectale</i></b> | 6.06%     | 0.00 - 4.44% | High  |

Previously named *Eubacterium rectale*, this is a common member of the human gut.

**Fuel sources used:**

This species is a moderate degrader of fibre; a poor degrader of mucin; and a moderate degrader of protein.

**Metabolites produced:**

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, beta-glucuronidase, branched chain amino acids, butyrate, cobalamin (B12), folate (B9), lactate, riboflavin (B2).

**Metabolites consumed:**

In addition, the genomic analysis shows that most members of this species can consume: lactose.

**Emerging research:**

This species is commonly associated with healthy controls in research studies. Low levels of this bacterium have been observed in Crohn's disease and ulcerative colitis.

|   |              |                                               |       |               |      |
|---|--------------|-----------------------------------------------|-------|---------------|------|
| + | Firmicutes_A | <b><i>Fusicatenibacter saccharivorans</i></b> | 5.79% | 0.418 - 4.06% | High |
|---|--------------|-----------------------------------------------|-------|---------------|------|

This is a recently discovered species and an inhabitant of the human gut.

**Fuel sources used:**

This species is a moderate degrader of fibre; a moderate degrader of mucin; and a moderate degrader of protein.

**Metabolites produced:**

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, ammonia (urease), beta-glucuronidase, biotin (B7), branched chain amino acids, cobalamin (B12), folate (B9), hydrogen sulphide, lactate, riboflavin (B2).

**Metabolites consumed:**

In addition, the genomic analysis shows that most members of this species can consume: lactose.

**Emerging research:**

Lower levels of this species were observed in patients with colon cancer.

# Species Profile

## SPECIES

| Phylum | Species                                    | Abundance | Range         | Level |
|--------|--------------------------------------------|-----------|---------------|-------|
| +      | Firmicutes_A<br><i>Anaerostipes hadrus</i> | 5.71%     | 0.115 - 2.37% | High  |

Formerly known as *Eubacterium hadrum*. This is a common inhabitant of the human gut.

### Fuel sources used:

This species is a moderate degrader of fibre; a poor degrader of mucin; and a moderate degrader of protein.

### Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, ammonia (urease), branched chain amino acids, butyrate, folate (B9), hydrogen sulphide, lactate, riboflavin (B2).

### Metabolites consumed:

In addition, the genomic analysis shows that most members of this species can consume: GABA, lactose, oxalate.

|   |                                                   |       |              |      |
|---|---------------------------------------------------|-------|--------------|------|
| + | Bacteroidota<br><i>Bacteroides_B massiliensis</i> | 4.22% | 0.00 - 1.20% | High |
|---|---------------------------------------------------|-------|--------------|------|

This is a normal inhabitant of the human gut microbiome.

### Fuel sources used:

This species is a moderate degrader of fibre; a good degrader of mucin; and a moderate degrader of protein.

### Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, ammonia (urease), beta-glucuronidase, biotin (B7), branched chain amino acids, folate (B9), GABA, hydrogen sulphide, lactate, propionate, riboflavin (B2), vitamin K.

### Metabolites consumed:

In addition, the genomic analysis shows that most members of this species can consume: GABA, lactose.

### Emerging research:

Higher levels of this species have been observed in individuals with colon cancer. This species has also been associated with a diet high in red meat.

# Species Profile

## SPECIES

| Phylum       | Species                               | Abundance | Range         | Level |
|--------------|---------------------------------------|-----------|---------------|-------|
| Firmicutes_A | <i>Faecalibacterium prausnitzii_D</i> | 3.28%     | 0.099 - 2.11% | High  |

### Fuel sources used:

This species is a moderate degrader of fibre; a poor degrader of mucin; and a moderate degrader of protein.

### Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, beta-glucuronidase, branched chain amino acids, butyrate, cobalamin (B12), lactate, riboflavin (B2).

### Metabolites consumed:

In addition, the genomic analysis shows that most members of this species can consume: lactose.

|                |                            |       |              |      |
|----------------|----------------------------|-------|--------------|------|
| Proteobacteria | <b>CAG-267 sp001917135</b> | 2.99% | 0.00 - 1.35% | High |
|----------------|----------------------------|-------|--------------|------|

### Fuel sources used:

This species is a poor degrader of fibre; a poor degrader of mucin; and a moderate degrader of protein.

### Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, lactate, propionate.

### Metabolites consumed:

In addition, the genomic analysis indicates that most members of this species do not consume any reported metabolites.

### Emerging research:

This species is named according to the Genome Taxonomy Database (GTDB), a standardised microbial taxonomy based on the genomes of organisms, rather than their phenotype.

# Species Profile

## SPECIES

| Phylum       | Species                     | Abundance | Range          | Level |
|--------------|-----------------------------|-----------|----------------|-------|
| Firmicutes_A | <i>Faecalicitena faecis</i> | 2.72%     | 0.077 - 0.880% | High  |

Previously called *Ruminococcus faecis*, this is a recently discovered species and common inhabitant of the human gut.

### Fuel sources used:

This species is a moderate degrader of fibre; a poor degrader of mucin; and a moderate degrader of protein.

### Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, ammonia (urease), biotin (B7), branched chain amino acids, cobalamin (B12), folate (B9), hydrogen sulphide, lactate, riboflavin (B2).

### Metabolites consumed:

In addition, the genomic analysis shows that most members of this species can consume: lactose.

|   |                  |                               |       |               |      |
|---|------------------|-------------------------------|-------|---------------|------|
| + | Actinobacteriota | <i>Bifidobacterium longum</i> | 2.46% | 0.031 - 1.44% | High |
|---|------------------|-------------------------------|-------|---------------|------|

This is a beneficial inhabitant of the gut in adults and a popular probiotic.

### Fuel sources used:

This species is a moderate degrader of fibre; a poor degrader of mucin; and a moderate degrader of protein.

### Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, ammonia (urease), branched chain amino acids, folate (B9), GABA, lactate, riboflavin (B2).

### Metabolites consumed:

In addition, the genomic analysis shows that most members of this species can consume: GABA, lactose, oxalate.

### Emerging research:

*B.longum* has been associated with reductions in harmful bacteria, anti-allergy effects, and anti-obesity effects in mouse models, but further research still needs to be done in humans.

# Species Profile

## SPECIES

| Phylum                                                                                         | Species                     | Abundance | Range        | Level   |
|------------------------------------------------------------------------------------------------|-----------------------------|-----------|--------------|---------|
|  Bacteroidota | <i>Alistipes putredinis</i> | 2.12%     | 0.00 - 3.41% | Average |

This is a common inhabitant of the gut microbiome.

**Fuel sources used:**

This species is a poor degrader of fibre; a poor degrader of mucin; and a moderate degrader of protein.

**Metabolites produced:**

Our genomic analysis indicates that most members of this species can produce the following metabolites: butyrate, folate (B9), GABA, lactate, riboflavin (B2), vitamin K.

**Metabolites consumed:**

In addition, the genomic analysis shows that most members of this species can consume: lactose.

**Emerging research:**

Studies have observed higher levels of this species in patients with colon cancer. However, other studies associated a low abundance of this species with chronic fatigue syndrome, Crohn's disease and irritable bowel syndrome.

|                                                                                                  |                          |       |               |      |
|--------------------------------------------------------------------------------------------------|--------------------------|-------|---------------|------|
|  Firmicutes_A | <i>Dorea longicatena</i> | 2.00% | 0.182 - 1.63% | High |
|--------------------------------------------------------------------------------------------------|--------------------------|-------|---------------|------|

This is a common inhabitant of the human gut.

**Fuel sources used:**

This species is a moderate degrader of fibre; a poor degrader of mucin; and a moderate degrader of protein.

**Metabolites produced:**

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, ammonia (urease), beta-glucuronidase, branched chain amino acids, cobalamin (B12), folate (B9), lactate, riboflavin (B2), trimethylamine.

**Metabolites consumed:**

In addition, the genomic analysis shows that most members of this species can consume: lactose.

**Emerging research:**

Multiple studies have observed this species at higher levels in individuals with obesity compared to lean controls. However in obese, postmenopausal women, this species was associated with improved insulin sensitivity. This species has also been observed at lower levels in individuals with chronic fatigue syndrome and inflammatory bowel disease.

# Species Profile

## SPECIES

| Phylum         | Species                   | Abundance | Range         | Level |
|----------------|---------------------------|-----------|---------------|-------|
| - Bacteroidota | <i>Bacteroides ovatus</i> | 1.96%     | 0.00 - 0.670% | High  |

This is one of the most common inhabitants of the gut.

**Fuel sources used:**

This species is a good degrader of fibre; a good degrader of mucin; and a moderate degrader of protein.

**Metabolites produced:**

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, beta-glucuronidase, biotin (B7), branched chain amino acids, folate (B9), GABA, lactate, propionate, riboflavin (B2), vitamin K.

**Metabolites consumed:**

In addition, the genomic analysis shows that most members of this species can consume: lactose.

**Emerging research:**

Higher levels of this species have been associated with type 1 diabetes in children and the progression of Crohn's disease in adults.

|                |                              |       |               |         |
|----------------|------------------------------|-------|---------------|---------|
| + Bacteroidota | <i>Bacteroides uniformis</i> | 1.82% | 0.290 - 3.68% | Average |
|----------------|------------------------------|-------|---------------|---------|

This is one of the most common inhabitants of the human gut.

**Fuel sources used:**

This species is a good degrader of fibre; a good degrader of mucin; and a moderate degrader of protein.

**Metabolites produced:**

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, beta-glucuronidase, biotin (B7), branched chain amino acids, folate (B9), GABA, lactate, propionate, riboflavin (B2), vitamin K.

**Metabolites consumed:**

In addition, the genomic analysis shows that most members of this species can consume: lactose.

**Emerging research:**

Certain strains have been observed to promote the production of anti-inflammatory compounds, improve immune function, and provide protection against diet induced obesity in mouse models, however this has not yet been validated in humans. One study observed higher levels of this species in patients with ulcerative colitis.

# Species Profile

## SPECIES

| Phylum         | Species                            | Abundance | Range         | Level   |
|----------------|------------------------------------|-----------|---------------|---------|
| Firmicutes_A   | <i>Blautia_A wexlerae</i>          | 1.77%     | 0.222 - 2.79% | Average |
| Proteobacteria | <i>Sutterella wadsworthensis_B</i> | 1.48%     | 0.00 - 0.592% | High    |
| Firmicutes_A   | <i>CAG-56 sp900066615</i>          | 1.42%     | 0.00 - 0.691% | High    |
| – Bacteroidota | <i>Bacteroides caccae</i>          | 1.32%     | 0.00 - 0.871% | High    |

This is a common member of the human gut.

### Fuel sources used:

This species is a moderate degrader of fibre; a good degrader of mucin; and a moderate degrader of protein.

### Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, beta-glucuronidase, biotin (B7), branched chain amino acids, folate (B9), GABA, hydrogen sulphide, lactate, propionate, riboflavin (B2), vitamin K.

### Metabolites consumed:

In addition, the genomic analysis shows that most members of this species can consume: GABA, lactose.

### Emerging research:

A protein produced by this species has been linked to inflammatory bowel disease and elevated levels of this species have been observed in individuals with gout.

|                  |                                  |       |                |      |
|------------------|----------------------------------|-------|----------------|------|
| Firmicutes_A     | <i>Blautia_A massiliensis</i>    | 1.30% | 0.046 - 0.989% | High |
| Proteobacteria   | <i>Duodenibacillus MIC9863</i>   | 1.17% | 0.00 - 0.00%   | High |
| Actinobacteriota | <i>Collinsella aerofaciens_F</i> | 1.07% | 0.00 - 0.195%  | High |

# Species Profile

## SPECIES

| Phylum         | Species                                   | Abundance | Range         | Level |
|----------------|-------------------------------------------|-----------|---------------|-------|
| Firmicutes     | <i>Erysipelatoclostridium sp000752095</i> | 1.03%     | 0.00 - 0.449% | High  |
| Firmicutes_A   | <i>Lachnospira rogosae</i>                | 0.896%    | 0.00 - 0.776% | High  |
| – Bacteroidota | <i>Parabacteroides merdae</i>             | 0.882%    | 0.00 - 0.524% | High  |

Formerly known as *Bacteroides merdae*. This is a common inhabitant of the human gut.

### Fuel sources used:

This species is a moderate degrader of fibre; a good degrader of mucin; and a moderate degrader of protein.

### Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, beta-glucuronidase, biotin (B7), branched chain amino acids, folate (B9), GABA, lactate, riboflavin (B2), vitamin K.

### Metabolites consumed:

In addition, the genomic analysis shows that most members of this species can consume: GABA, lactose.

### Emerging research:

Higher levels of this species have been observed in individuals with hypertension and colon cancer. This species has been associated with a diet low in fruits and vegetables.

|              |                                     |        |               |      |
|--------------|-------------------------------------|--------|---------------|------|
| Bacteroidota | <i>Bacteroides thetaiotaomicron</i> | 0.834% | 0.00 - 0.477% | High |
| Firmicutes_A | <i>Clostridium_M sp001517625</i>    | 0.833% | 0.00 - 0.00%  | High |

# Species Profile

## SPECIES

| Phylum         | Species                                  | Abundance | Range          | Level |
|----------------|------------------------------------------|-----------|----------------|-------|
| – Bacteroidota | <b><i>Parabacteroides distasonis</i></b> | 0.787%    | 0.057 - 0.581% | High  |

Formerly known as *Bacteroides distasonis*. This is a common inhabitant of the human gut.

### Fuel sources used:

This species is a moderate degrader of fibre; a good degrader of mucin; and a moderate degrader of protein.

### Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, biotin (B7), branched chain amino acids, folate (B9), GABA, hydrogen sulphide, lactate, riboflavin (B2), vitamin K.

### Metabolites consumed:

In addition, the genomic analysis shows that most members of this species can consume: GABA, lactose.

### Emerging research:

Higher levels of this species have been observed in individuals with colon cancer and in pregnant women with gestational diabetes.

|              |                                             |        |                |         |
|--------------|---------------------------------------------|--------|----------------|---------|
| Firmicutes_A | <b><i>Blautia_A obeum</i></b>               | 0.710% | 0.057 - 0.851% | Average |
| Firmicutes_C | <b><i>Phascolarctobacterium faecium</i></b> | 0.696% | 0.00 - 0.336%  | High    |
| Firmicutes_A | <b><i>Clostridium_M sp000431375</i></b>     | 0.687% | 0.00 - 0.074%  | High    |
| Firmicutes_A | <b><i>Gemmiger formicilis</i></b>           | 0.646% | 0.198 - 1.95%  | Average |

# Species Profile

## SPECIES

| Phylum                                                                                         | Species                      | Abundance | Range         | Level |
|------------------------------------------------------------------------------------------------|------------------------------|-----------|---------------|-------|
|  Firmicutes_A | <i>Eubacterium_I ramulus</i> | 0.618%    | 0.00 - 0.267% | High  |

This is an inhabitant of the gut microbiome.

### Fuel sources used:

This species is a moderate degrader of fibre; a poor degrader of mucin; and a moderate degrader of protein.

### Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, beta-glucuronidase, biotin (B7), branched chain amino acids, butyrate, cobalamin (B12), folate (B9), histamine, lactate, riboflavin (B2).

### Metabolites consumed:

In addition, the genomic analysis shows that most members of this species can consume: lactose.

### Emerging research:

This species can also use the plant flavonoid quercetin as an energy source.

This species has been observed at higher levels in postmenopausal, obese women with insulin resistance. However, another study showed lower levels in patients with Crohn's disease.

|  |              |                                   |        |               |      |
|--|--------------|-----------------------------------|--------|---------------|------|
|  | Firmicutes_A | <i>Ruminococcus_A sp003011855</i> | 0.615% | 0.00 - 0.317% | High |
|  | Firmicutes_A | <i>Eubacterium_E hallii_A</i>     | 0.593% | 0.00 - 0.181% | High |
|  | Firmicutes_A | <i>UBA9502 MIC8595</i>            | 0.579% | 0.00 - 0.00%  | High |
|  | Firmicutes_A | <i>Clostridium_Q sp003024715</i>  | 0.575% | 0.00 - 0.214% | High |

# Species Profile

## SPECIES

| Phylum         | Species                           | Abundance | Range         | Level |
|----------------|-----------------------------------|-----------|---------------|-------|
| – Firmicutes_A | <b><i>Faecalcatena gnavus</i></b> | 0.540%    | 0.00 - 0.026% | High  |

Previously called *Ruminococcus gnavus*, this is one of the earliest colonisers of the infant human gut, and it persists in the adult human gut.

### Fuel sources used:

This species is a moderate degrader of fibre; a poor degrader of mucin; and a moderate degrader of protein.

### Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, ammonia (urease), beta-glucuronidase, biotin (B7), branched chain amino acids, cobalamin (B12), folate (B9), lactate, propionate, riboflavin (B2).

### Metabolites consumed:

In addition, the genomic analysis shows that most members of this species can consume: lactose.

### Emerging research:

Higher levels of this species have been observed in individuals with irritable bowel syndrome, Crohn's disease, atherosclerosis, and obesity.

|  |              |                                              |        |               |         |
|--|--------------|----------------------------------------------|--------|---------------|---------|
|  | Firmicutes_A | <b><i>Faecalibacterium prausnitzii_G</i></b> | 0.539% | 0.111 - 3.21% | Average |
|  | Bacteroidota | <b><i>Alistipes MIC8513</i></b>              | 0.443% | 0.00 - 0.133% | High    |
|  | Firmicutes_A | <b><i>Blautia MIC9904</i></b>                | 0.442% | 0.00 - 0.00%  | High    |

# Species Profile

## SPECIES

| Phylum | Species                              | Abundance | Range         | Level   |
|--------|--------------------------------------|-----------|---------------|---------|
| +      | Bacteroidota <i>Alistipes shahii</i> | 0.432%    | 0.00 - 0.497% | Average |

This is a common inhabitant of the human gut.

**Fuel sources used:**

This species is a moderate degrader of fibre; a good degrader of mucin; and a moderate degrader of protein.

**Metabolites produced:**

Our genomic analysis indicates that most members of this species can produce the following metabolites: beta-glucuronidase, branched chain amino acids, folate (B9), GABA, lactate, riboflavin (B2).

**Metabolites consumed:**

In addition, the genomic analysis shows that most members of this species can consume: lactose.

**Emerging research:**

This species appears to have mostly beneficial effects. It has been associated with beneficial markers of cardiac health (low triglycerides, high beneficial cholesterol HDL levels), and was observed as depleted in patients with atherosclerotic heart disease and Crohn's disease. Additionally, a study in mice showed this species may improve the efficacy of cancer immunotherapy. However, this species was also observed at elevated levels in patients with Parkinson's Disease.

|   |                                           |        |                |      |
|---|-------------------------------------------|--------|----------------|------|
| + | Firmicutes_A <i>Dorea formicigenerans</i> | 0.394% | 0.069 - 0.301% | High |
|---|-------------------------------------------|--------|----------------|------|

Formerly known as *Eubacterium formicigenerans*. This is a common inhabitant of the human gut.

**Fuel sources used:**

This species is a poor degrader of fibre; a poor degrader of mucin; and a moderate degrader of protein.

**Metabolites produced:**

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, beta-glucuronidase, branched chain amino acids, cobalamin (B12), folate (B9), histamine, hydrogen sulphide, lactate, riboflavin (B2), trimethylamine.

**Metabolites consumed:**

In addition, the genomic analysis shows that most members of this species can consume: lactose.

**Emerging research:**

This species has been observed at decreased levels in individuals with colon cancer, inflammatory bowel disease and chronic fatigue syndrome, indicating it likely plays a beneficial role in health.

# Species Profile

## SPECIES

| Phylum             | Species                             | Abundance | Range         | Level   |
|--------------------|-------------------------------------|-----------|---------------|---------|
| Bacteroidota       | <i>Barnesiella intestinihominis</i> | 0.369%    | 0.00 - 0.524% | Average |
| Desulfobacterota_A | <i>Bilophila wadsworthia</i>        | 0.345%    | 0.00 - 0.217% | High    |

This is a common inhabitant of the human gut, but can become problematic at high levels.

### Fuel sources used:

This species is a poor degrader of fibre; a poor degrader of mucin; and a moderate degrader of protein.

### Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, ammonia (urease), branched chain amino acids, hydrogen sulphide, lactate, riboflavin (B2), trimethylamine.

### Metabolites consumed:

In addition, the genomic analysis indicates that most members of this species do not consume any reported metabolites.

### Emerging research:

Higher levels of this species have been observed in patients with colon cancer and in people that have a diet high in saturated fats. Mice studies have also suggested this species can promote increased inflammation in the gut and increased barrier dysfunction, though more research needs to be conducted in humans to confirm these results.

|              |                                        |        |               |         |
|--------------|----------------------------------------|--------|---------------|---------|
| Firmicutes_A | <i>Agathobaculum butyriciproducens</i> | 0.320% | 0.00 - 0.498% | Average |
|--------------|----------------------------------------|--------|---------------|---------|

# Species Profile

## SPECIES

| Phylum | Species                                        | Abundance | Range         | Level   |
|--------|------------------------------------------------|-----------|---------------|---------|
| +      | Firmicutes_A<br><i>Roseburia inulinivorans</i> | 0.319%    | 0.00 - 0.636% | Average |

This is a common and important member of the human gut microbiome.

**Fuel sources used:**

This species is a moderate degrader of fibre; a moderate degrader of mucin; and a moderate degrader of protein.

**Metabolites produced:**

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, beta-glucuronidase, biotin (B7), branched chain amino acids, butyrate, cobalamin (B12), folate (B9), hydrogen sulphide, lactate, riboflavin (B2).

**Metabolites consumed:**

In addition, the genomic analysis shows that most members of this species can consume: GABA, lactose, oxalate.

**Emerging research:**

This is a primary producer of the beneficial short chain fatty acid butyrate. This species has been observed at reduced levels in individuals with type 2 diabetes.

|  |                                                 |        |               |      |
|--|-------------------------------------------------|--------|---------------|------|
|  | Firmicutes_A<br><i>Anaerotignum sp000436415</i> | 0.302% | 0.00 - 0.124% | High |
|--|-------------------------------------------------|--------|---------------|------|

# Species Profile

## SPECIES

| Phylum | Species                                             | Abundance | Range          | Level   |
|--------|-----------------------------------------------------|-----------|----------------|---------|
| +      | Bacteroidota <b><i>Odoribacter splanchnicus</i></b> | 0.300%    | 0.079 - 0.440% | Average |

Formerly known as *Bacteroides splanchnicus*. This a common inhabitant of the human gut.

### Fuel sources used:

This species is a moderate degrader of fibre; a good degrader of mucin; and a moderate degrader of protein.

### Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, ammonia (urease), biotin (B7), branched chain amino acids, butyrate, folate (B9), GABA, histamine, lactate, propionate, riboflavin (B2), vitamin K.

### Metabolites consumed:

In addition, the genomic analysis shows that most members of this species can consume: GABA, lactose.

### Emerging research:

Lower levels of this species have been observed in postmenopausal obese women with insulin resistance, patients with irritable bowel syndrome and in women with bladder pain syndrome, indicating it likely plays a beneficial role in health.

|  |                                                |        |              |      |
|--|------------------------------------------------|--------|--------------|------|
|  | Bacteroidota <b><i>Bacteroides MIC6697</i></b> | 0.297% | 0.00 - 0.00% | High |
|  | Firmicutes_A <b><i>CAG-274 MIC6942</i></b>     | 0.294% | 0.00 - 0.00% | High |

# Species Profile

## SPECIES

| Phylum | Species                                     | Abundance | Range         | Level   |
|--------|---------------------------------------------|-----------|---------------|---------|
| +      | Firmicutes_A<br><i>Eubacterium_E hallii</i> | 0.291%    | 0.168 - 1.28% | Average |

This is an important member of the gut microbiome.

### Fuel sources used:

This species is a poor degrader of fibre; a poor degrader of mucin; and a moderate degrader of protein.

### Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, beta-glucuronidase, biotin (B7), branched chain amino acids, butyrate, cobalamin (B12), folate (B9), hydrogen sulphide, lactate, propionate, riboflavin (B2).

### Metabolites consumed:

In addition, the genomic analysis shows that most members of this species can consume: lactose, oxalate.

### Emerging research:

This species can also use the short chain fatty acid acetate, as well as lactate produced by bacterial species such as *Bifidobacterium* spp. for energy.

One study observed lower levels of this species in patients with colon cancer. Also, a study in mice suggested this species may be effective at improving insulin sensitivity.

|  |                                                        |        |               |      |
|--|--------------------------------------------------------|--------|---------------|------|
|  | Firmicutes_A<br><i>Ruminiclostridium_C sp000435295</i> | 0.286% | 0.00 - 0.252% | High |
|--|--------------------------------------------------------|--------|---------------|------|

# Species Profile

## SPECIES

| Phylum | Species                                         | Abundance | Range         | Level |
|--------|-------------------------------------------------|-----------|---------------|-------|
| +      | Firmicutes_A<br><i>Eubacterium_G ventriosum</i> | 0.272%    | 0.00 - 0.242% | High  |

This is a common inhabitant of the human gut.

**Fuel sources used:**

This species is a poor degrader of fibre; a poor degrader of mucin; and a moderate degrader of protein.

**Metabolites produced:**

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, beta-glucuronidase, branched chain amino acids, butyrate, folate (B9), histamine, hydrogen sulphide, lactate, riboflavin (B2).

**Metabolites consumed:**

In addition, the genomic analysis shows that most members of this species can consume: GABA, lactose.

**Emerging research:**

This species has been observed at lower levels in individuals with chronic fatigue syndrome, Crohn's disease and colon cancer, indicating it likely plays a beneficial role in health.

|   |                                                       |        |               |      |
|---|-------------------------------------------------------|--------|---------------|------|
| + | Actinobacteriota<br><i>Senegalimassilia anaerobia</i> | 0.271% | 0.00 - 0.194% | High |
|---|-------------------------------------------------------|--------|---------------|------|

This is a newly discovered inhabitant of the human gut.

**Fuel sources used:**

This species is a poor degrader of fibre; a poor degrader of mucin; and a moderate degrader of protein.

**Metabolites produced:**

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, branched chain amino acids, lactate, riboflavin (B2), vitamin K.

**Metabolites consumed:**

In addition, the genomic analysis indicates that most members of this species do not consume any reported metabolites.

**Emerging research:**

Lower levels of this species have been observed in individuals with Crohn's disease and ulcerative colitis, suggesting it may play a beneficial role in health.

# Species Profile

## SPECIES

| Phylum         | Species                             | Abundance | Range         | Level   |
|----------------|-------------------------------------|-----------|---------------|---------|
| Firmicutes_A   | <b><i>Blautia_A</i> sp900066165</b> | 0.244%    | 0.107 - 1.13% | Average |
| Firmicutes_A   | <b>CAG-81</b> sp900066535           | 0.241%    | 0.00 - 0.162% | High    |
| – Bacteroidota | <b><i>Alistipes finegoldii</i></b>  | 0.237%    | 0.00 - 0.492% | Average |

This is a common inhabitant of the gut microbiome.

### Fuel sources used:

This species is a moderate degrader of fibre; a good degrader of mucin; and a moderate degrader of protein.

### Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: ammonia (urease), branched chain amino acids, folate (B9), GABA, lactate, riboflavin (B2), vitamin K.

### Metabolites consumed:

In addition, the genomic analysis shows that most members of this species can consume: lactose.

### Emerging research:

Studies have observed higher levels of this species in patients with colon cancer. This species has been associated with diets high in red meat and/or low in fruits and vegetables.

|              |                                     |        |               |         |
|--------------|-------------------------------------|--------|---------------|---------|
| Firmicutes_A | <b><i>Blautia_A</i> sp000436615</b> | 0.228% | 0.00 - 0.253% | Average |
|--------------|-------------------------------------|--------|---------------|---------|

# Species Profile

## SPECIES

| Phylum | Species                                   | Abundance | Range         | Level |
|--------|-------------------------------------------|-----------|---------------|-------|
| -      | Actinobacteriota <i>Eggerthella lenta</i> | 0.215%    | 0.00 - 0.080% | High  |

This is an inhabitant of the gut microbiota, but has also been associated with gastrointestinal infections.

**Fuel sources used:**

This species is a poor degrader of fibre; a poor degrader of mucin; and a moderate degrader of protein.

**Metabolites produced:**

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, branched chain amino acids, GABA, histamine, lactate, vitamin K.

**Metabolites consumed:**

In addition, the genomic analysis shows that most members of this species can consume: lactose.

**Emerging research:**

This species can also use some steroids such as the stress hormone cortisol, and the neurotransmitter dopamine, for energy.

Elevated levels of *E. lenta* have been associated with frailty, atherosclerosis, chronic fatigue syndrome, type II diabetes, irritable bowel syndrome and inflammatory bowel disease. This species can also inactivate the cardiac drug digoxin by breaking it down. Interestingly, this species prefers the amino acid arginine for growth. When arginine is present, this inhibits *E. lenta* from breaking down digoxin.

|   |              |                               |        |               |         |
|---|--------------|-------------------------------|--------|---------------|---------|
| + | Firmicutes_A | <i>Roseburia intestinalis</i> | 0.212% | 0.00 - 0.540% | Average |
|---|--------------|-------------------------------|--------|---------------|---------|

This is a common and important member of the human gut microbiome.

**Fuel sources used:**

This species is a good degrader of fibre; a moderate degrader of mucin; and a moderate degrader of protein.

**Metabolites produced:**

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, ammonia (urease), beta-glucuronidase, biotin (B7), branched chain amino acids, butyrate, cobalamin (B12), folate (B9), hydrogen sulphide, lactate, riboflavin (B2).

**Metabolites consumed:**

In addition, the genomic analysis shows that most members of this species can consume: GABA, lactose.

**Emerging research:**

This is a primary producer of the beneficial short chain fatty acid butyrate. This species has been observed at lower levels in individuals with type 2 diabetes and children and adolescents with new-onset Crohn's disease, suggesting this species likely plays a beneficial role in health.

# Species Profile

## SPECIES

| Phylum         | Species                               | Abundance | Range         | Level   |
|----------------|---------------------------------------|-----------|---------------|---------|
| Firmicutes_A   | <i>Oscillibacter sp900066435</i>      | 0.188%    | 0.00 - 0.136% | High    |
| Bacteroidota   | <i>Butyricimonas sp002161485</i>      | 0.167%    | 0.00 - 0.086% | High    |
| Firmicutes_A   | <i>Lawsonibacter asaccharolyticus</i> | 0.155%    | 0.00 - 0.096% | High    |
| Firmicutes_A   | <i>KLE1615 sp900066985</i>            | 0.153%    | 0.00 - 0.642% | Average |
| Proteobacteria | <i>CAG-521 sp000437635</i>            | 0.114%    | 0.00 - 0.00%  | High    |
| +              | <i>Agathobacter faecis</i>            | 0.105%    | 0.00 - 3.20%  | Average |

Previously named *Roseburia faecis*. This is a common and important member of the human gut microbiome.

### Fuel sources used:

This species is a moderate degrader of fibre; a moderate degrader of mucin; and a moderate degrader of protein.

### Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, ammonia (urease), beta-glucuronidase, branched chain amino acids, butyrate, cobalamin (B12), folate (B9), hydrogen sulphide, lactate, riboflavin (B2).

### Metabolites consumed:

In addition, the genomic analysis shows that most members of this species can consume: lactose, oxalate.

### Emerging research:

This species is commonly associated with healthy controls in research studies. Low levels of this bacterium have been observed in patients with liver cirrhosis.

|              |                            |        |              |      |
|--------------|----------------------------|--------|--------------|------|
| Bacteroidota | <i>Bacteroides MIC7573</i> | 0.101% | 0.00 - 0.00% | High |
|--------------|----------------------------|--------|--------------|------|

# Species Profile

## SPECIES

| Phylum        | Species                          | Abundance | Range          | Level   |
|---------------|----------------------------------|-----------|----------------|---------|
| Firmicutes_A  | <b>UBA9502 MIC7149</b>           | 0.098%    | 0.00 - 0.052%  | High    |
| Firmicutes_A  | <b>Dorea sp900066555</b>         | 0.097%    | 0.00 - 0.068%  | High    |
| Cyanobacteria | <b>Zag1 sp000438175</b>          | 0.094%    | 0.00 - 0.00%   | High    |
| Firmicutes_A  | <b>Clostridium_M MIC6986</b>     | 0.087%    | 0.00 - 0.071%  | High    |
| Firmicutes_A  | <b>CAG-81 sp000435795</b>        | 0.086%    | 0.00 - 0.076%  | High    |
| Firmicutes_A  | <b>Finegoldia magna</b>          | 0.080%    | 0.00 - 0.219%  | Average |
| Bacteroidota  | <b>Bacteroides MIC7427</b>       | 0.078%    | 0.00 - 0.00%   | High    |
| Bacteroidota  | <b>Alistipes obesi</b>           | 0.074%    | 0.00 - 0.422%  | Average |
| Firmicutes_A  | <b>CAG-41 sp900066215</b>        | 0.069%    | 0.00 - 0.432%  | Average |
| Firmicutes_A  | <b>Negativibacillus MIC8225</b>  | 0.069%    | 0.00 - 0.00%   | High    |
| Firmicutes_A  | <b>Romboutsia timonensis</b>     | 0.056%    | 0.026 - 0.358% | Average |
| Firmicutes_A  | <b>Acetatifactor sp900066565</b> | 0.054%    | 0.00 - 1.00%   | Average |
| Firmicutes_A  | <b>GCA-900066135 MIC6659</b>     | 0.052%    | 0.00 - 0.143%  | Average |

# Species Profile

## SPECIES

| Phylum           | Species                                | Abundance | Range         | Level   |
|------------------|----------------------------------------|-----------|---------------|---------|
| Firmicutes_A     | <i>Flavonifractor sp000508885</i>      | 0.048%    | 0.00 - 0.020% | High    |
| Bacteroidota     | <i>Alistipes_A ihumii</i>              | 0.048%    | 0.00 - 0.158% | Average |
| Bacteroidota     | <i>Prevotella bivia</i>                | 0.047%    | 0.00 - 0.031% | High    |
| Firmicutes_A     | <i>Faecalibacterium prausnitzii_I</i>  | 0.046%    | 0.00 - 0.478% | Average |
| Firmicutes_A     | <i>Ruthenibacterium lactatiformans</i> | 0.046%    | 0.00 - 0.096% | Average |
| Firmicutes_A     | <i>Lawsonibacter sp900066825</i>       | 0.045%    | 0.00 - 0.00%  | High    |
| Firmicutes_A     | <i>Ruminococcaceae MIC8509</i>         | 0.037%    | 0.00 - 0.053% | Average |
| Firmicutes_A     | <i>Dorea sp900240315</i>               | 0.036%    | 0.00 - 0.00%  | High    |
| Actinobacteriota | <i>CAG-1427 sp000435475</i>            | 0.033%    | 0.00 - 0.113% | Average |
| Firmicutes_A     | <i>Peptoniphilus_A senegalensis</i>    | 0.033%    | 0.00 - 0.00%  | High    |
| Bacteroidota     | <i>Bacteroides timonensis</i>          | 0.031%    | 0.00 - 0.00%  | High    |
| Actinobacteriota | <i>Varibaculum cambriense_A</i>        | 0.029%    | 0.00 - 0.003% | High    |
| Actinobacteriota | <i>Lawsonella MIC8032</i>              | 0.029%    | 0.00 - 0.116% | Average |

# Species Profile

## SPECIES

| Phylum         | Species                              | Abundance | Range         | Level   |
|----------------|--------------------------------------|-----------|---------------|---------|
| – Firmicutes_A | <b><i>Flavonifractor plautii</i></b> | 0.029%    | 0.00 - 0.049% | Average |

Formerly known as *Clostridium orbiscindens* and *Eubacterium plautii*.

### Fuel sources used:

This species is a poor degrader of fibre; a moderate degrader of mucin; and a moderate degrader of protein.

### Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: acetate, branched chain amino acids, butyrate, cobalamin (B12), lactate, propionate, trimethylamine.

### Metabolites consumed:

In addition, the genomic analysis shows that most members of this species can consume: GABA, lactose.

### Emerging research:

Higher levels of this species have been observed in patients with Crohn's disease, ulcerative colitis and in children with irritable bowel syndrome.

|  |                  |                                         |        |               |         |
|--|------------------|-----------------------------------------|--------|---------------|---------|
|  | Firmicutes_A     | <b><i>Roseburia MIC8797</i></b>         | 0.026% | 0.00 - 0.00%  | High    |
|  | Firmicutes_A     | <b><i>Lawsonibacter sp900066645</i></b> | 0.026% | 0.00 - 0.025% | High    |
|  | Actinobacteriota | <b><i>Gordonibacter pamelaeae</i></b>   | 0.022% | 0.00 - 0.020% | High    |
|  | Firmicutes_A     | <b><i>Lachnospirales MIC9617</i></b>    | 0.021% | 0.00 - 0.00%  | High    |
|  | Firmicutes_A     | <b><i>Lachnospiraceae MIC8879</i></b>   | 0.021% | 0.00 - 0.082% | Average |
|  | Bacteroidota     | <b><i>Bacteroides MIC8726</i></b>       | 0.019% | 0.00 - 0.001% | High    |

# Species Profile

## SPECIES

| Phylum         | Species                              | Abundance | Range        | Level |
|----------------|--------------------------------------|-----------|--------------|-------|
| – Firmicutes_A | <i>Peptostreptococcus anaerobius</i> | 0.018%    | 0.00 - 0.00% | High  |

This species is uncommon in the human gut.

### Fuel sources used:

This species is a poor degrader of fibre; a poor degrader of mucin; and a moderate degrader of protein.

### Metabolites produced:

Our genomic analysis indicates that most members of this species can produce the following metabolites: 3-IPA, acetate, cobalamin (B12), folate (B9), lactate, propionate, riboflavin (B2), trimethylamine.

### Metabolites consumed:

In addition, the genomic analysis indicates that most members of this species do not consume any reported metabolites.

### Emerging research:

This species has been observed at higher levels in patients with colon cancer.

|  |              |                                           |        |               |         |
|--|--------------|-------------------------------------------|--------|---------------|---------|
|  | Firmicutes_A | <i>Flavonifractor sp900199495</i>         | 0.018% | 0.00 - 0.00%  | High    |
|  | Firmicutes_A | <i>Lachnospiraceae MIC6593</i>            | 0.017% | 0.00 - 0.018% | Average |
|  | Firmicutes_A | <i>Faecalicatena sp000509105</i>          | 0.017% | 0.00 - 0.00%  | High    |
|  | Firmicutes   | <i>Erysipelatoclostridium sp000508865</i> | 0.016% | 0.00 - 0.001% | High    |
|  | Firmicutes_A | <i>Oscillospiraceae MIC9482</i>           | 0.016% | 0.00 - 0.017% | Average |

# Gut microbiome report

powered by  
**MICROBA** 

